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PREFACE 

This dissertation is concerned with the simplification 

of calculations on electronic systems through the exploita­

tion of permutational symmetry. 

Accurate theoretical descriptions of chemical phenom­

ena are made easier when secular equations can be factored 

in terms of commuting operators. It is impractical to ig­

nore this possibility in any but the simplest cases. In most 

quantum-chemical calculations, it is therefore desirable to 

construct wave functions from antisymmetrized space-spin 

functions that are also eigenfunctions of and S^. 

Two problems must be solved. First of all, one must be 

able to generate spin eigenfunctions for any desired eigen­

values S and Mg. In other words, one must be able to find a 

basis for any given irreducible representation of the symmet­

ric group. For systems with more than a few electrons, this 

is more difficult than it might seem. The problem has re­

ceived much attention in recent years, and a survey of the 

techniques available appears in the third and fourth chapters. 

The second problem is to structure the wave function 

in such a way that expectation values can be calculated con­

veniently. It is particularly important to obtain a simple 

formula for the energy. Previous attempts have yielded ex­

pressions involving sums over many permutation matrix elements 

or other complicated coefficients. This subject is discussed 
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in the second chapter. 

We introduce a particular construction for unrestricted 

configuration-interaction wave functions which simplifies 

the calculation of expectation values. General wave functions 

are expressed in terms of pure-spin components of determi-

nantal functions. The building blocks, called "spin-adapted 

antisymmetrized products", or SAAP's, are designed to exploit 

double occupancy. 

It is shown that SAAP's, when constructed from ortho-

normal orbitals, can be handled in calculations more easily 

than Slater determinants. Simple formulas are derived for 

matrix elements of the Hamiltonian and L . A computer program 

is given for the evaluation of coefficients occurring in the 

energy matrix elements. 

Two new methods are described for the construction of 

suitable spin eigenfunctions. The first of these is an algo­

rithm for generating Serber functions by diagonalization of 

/v2 
the S -matrix. The other is a direct procedure for obtaining 

orthogonal matric bases spanning Yamanouchi-Kotani and Serber 

representations of the symmetric group algebra. 

A computer program is given for generating simultaneous 

eigenfunctions of L^, £^, S^, and S^. 

In the discussion that follows, certain special symbols 

and conventions are used. These are explained in Appendices 

A and B. 
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GENERAL CONSIDERATIONS 

Indistinguishability of Electrons 

Electrons are identical, meaning that no experiment 

can tell them apart. This implies that expectation values 

are independent of any electron numbering scheme. Suppose 

that Y(1,2,...,N) is the exact wave function (a solution 

of the Schrodinger equation) for an N-electron system, and 

that P is any of the N1 permutations of the electrons. Then 

for any observable operator Ô, 

<PY(1,2,...,N)|ÔPY(1,2,...,N)> 

= <W(1,2,...,N)|ÔW(1,2,...,N)>. (1) 

Since permutations are unitary operators (Appendix B), it 

follows that 

<Y(1,2,...,N)|p"^0py(l,2,...,N)> 

= <y(l,2,...,N)|Ôy(l,2,...,N)> 

for any wave function. Thus it must be that 

Ô = P"^ÔP : (2) 

every observable operator is invariant under similarity 

transformations that permute its electron labels. In other 

words, every observable operator affects electrons symmetri­

cally . 

If it should happen that Y is permutationally symmet-
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rie or antisymmetric, 

PW(1,2,...,N) = ±Y(1,2,...,N), 

then it is clear that (1) is satisfied. However, (1) does 

not imply that the wave function has this property. In 

fact, any product function 

v(l,2,...,N) = a(l)b(2) ••• c(N) 

will satisfy (1). 

The behavior of the operators does induce a behavior 

in the wave functions. It follows from (2) that observable 

operators commute with all electronic permutations, and 

group-theoretical arguments then lead to the conclusion 

that eigenfunctions of observable operators span represen­

tations of the symmetric group. 

Suppose that the operator Ô has, for a given eigen­

value, a set of iri linearly independent, 

degenerate eigenfunctions. Then (2) guarantees that the 

result (P4>^) of permuting any eigenfunction in the set 

is a new function 

= It j [Fiji ' 

which is itself a vector in the space spanned by the <p^. 

The number [P]j^ is the ( j ,i)-elem.ent of the matrix [P] 

representing P, and the functions are said to form a 
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basis for the representation. 

If the symmetric group contains every symmetry 

transformation commuting with Ô, then the degenerate func- -

tions span an irreducible representatioh of 

(apart from accidental degeneracies), and each O-eigen-

value will be associated with a particular irreducible 

representation. 

Exclusion Principle 

Since permutations commute with the Hamiltonian, the 

implication of the argument above is that solutions of 

the N-electron Schrodinger equation for a given energy 

must span a representation of the symmetric group. Permu­

tations of electrons do not comprise every symmetry trans­

formation commuting with the Hamiltonian, so there is no 

theoretical reason to suppose that such a representation 

will be irreducible. 

Nevertheless, experiment demands that solutions of 

the Schrodinger equation for fermion systems must span 

the one-dimensional (thus irreducible) antisymmetric repre­

sentation of the symmetric group. In other words, for 

every P in S^^, 

PY(1,2,...,N) = e(P)Y(l,2;...,N), 

where e(P) is +1 when P is even and -1 when P is odd. 

Here P is a transformation which permutes the space and 



www.manaraa.com

4 

spin coordinates of the fermions. 

This result is the Pauli Exclusion Principle for 

fermions. 

Spin Eigenfunctions 

It happens that contains every symmetry transfor-

mation commuting with the total spin operator S . Thus 

spin eigenfunctions 0^(NSM) , satisfying the equations 

(NSM) = ft^s (s+1) (NSM) , 

(NSM) = (NSM) , 

are basis functions for irreducible representations of S^^. 

Here the permutations transform only the spin coordinates 

of the electrons. 

Spin eigenfunctions are important in quantum chemis­

try because, for many atoms and molecules, the Hamiltonian, 

H, very nearly commutes with S^ and S^. This means that 

eigenfunctions of H can be chosen to be also eigenfunctions 

of s and Sg. Doing so simplifies energy calculations by 

factoring the energy matrix; if two trial wave functions 

Tp (NSM) and ^.(NS'M') are spin eigenfunctions for which 
ot p 

S'^S or MYM, 

<^2(NSM)|H^g(NS'M')> = 0. 

The energy matrix reduces to a direct sum of blocks within 

which S and M are constant. 
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Thus the Pauli and Indistinguishability Principles lead 

to two conclusions regarding electronic wave functions; 

(i) the wave functions are antisymmetric with respect 

to simultaneous permutations of the space and spin 

coordinates of the electrons ; 

(ii) they can often be chosen to be eigenfunctions of 

f implying that they transform according to irreduci­

ble representations of the symmetric group permuting 

only the spin coordinates of the electrons. 

Spin-Adapted Antisymmetrized Products 

Slater determinants (Slater, 1929, 1931) are antisym­

metric with respect to simultaneous permutations of space 

and spin and are S^—eigenfunctions, but they are not in gen-

^2 eral eigenfunctions of S . An approximate wave function which 

is to be a spin eigenfunction is usually constructed as a 

linear combination of Slater determinants. In fact, any 

antisymmetric wave function can be expanded in Slater deter­

minants: such determinants span the configuration space 

(Lowdin, 1955 a) . 

A Slater determinant for N electrons is obtained by 

applying the antisymmetrizer (Appendix B) to the product 

of a space product function ç(N) and a spin product func­
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tion 0(NM) having the S^-eigenvalue M: 

«(NM) = (N)e(NM) ] . 

iA has been defined in such a way that it is idempotent, 

but $(NM) is not normalized.) In the discussion that fol­

lows, the orbitals of which *(N) is composed will not be 

discussed. They may be atomic or molecular orbitals: what 

they are in particular does not concern us at this stage. 

The pertinent fact is that <J) (N) is some product of one-

electron orbitals, which we shall for convenience assume 

to be orthonormal. 

In analogy to the Slater determinant 0(NM), we can 

define an antisymmetric eigenfunction of S^ which is also 

an eigenfunction of S by replacing the spin product func­

tion 0(NM) with a spin eigenfunction 0^(NSM). The new 

function, 

^^(NSM) = j^[4>(N)0^(NSM) 3 , (3) 

will be an eigenfunction of S because the spin operator 

commutes with . Functions like that given in (3) can be 

projected out of Slater determinants by suitable operators, 

and we shall refer to them as "spin-adapted antisymme-

trized products", or SAAP's. Since each spin eigenfunction 

(NSM) is a linear combination of spin products, a SAAP 

is a linear combination of Slater determinants. 

Spin-adapted antisymmetrized products span the N-
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. electron configuration space: any antisymmetric wave func­

tion can be expanded in terms of them. Furthermore, SAAP's 

possess an advantage over Slater determinants, in that they 

are eigenfunctions of S . Slater determinants are easy to 

handle without the use of group theory, and lead to con­

venient formulas for the matrix elements of observable 

operators. We shall show, using group theory, that SAAP's 

lead to formulas no less simple, and thus that they are 

more efficient building blocks for wave functions when S 

is a good quantum number. 

The antisymmetrizer in (3) masks the true relation­

ship between the space and spin components of the SAAP. 

Suppose that there are d(NS) spin eigenfunctions (NSM) 

for a given M. Then these functions span an irreducible 

matrix representation [P]^^ of S^: for any permutation 

P transforming the spin coordinates of the electrons 

1,2,...,N, 

Pe^(NSM) = y (NSM) [P]g^ . (4) 
3 

This will be called the spin representation of S^. Using 

this relation in (3), 

$ (NSM) = (Ni)"^ Te (P) (P<J)) (PG ) 
P 

= (N!)"l %E(P)(P*){Ieo[P]^^} 
P s P p" 

= (Ni)"^ Z^%E(P)[P]BS(P*)} eg , 
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or $ (NSM) = [d(NS)] ^ „ (NSa) 0^ (NSM) , (5) 
a g P P 

where 4g(NSa) = [d(NS)/Ni] Je (P) [P] (P4>) . (6) 

Equation (5) shows that the SAAP is a sum of terms, 

each of which is the product of a spin eigenfunction and 

some kind of space function. The space function, as shown 

in (6), is projected out of the "primitive" space product 

function ^ by a Wigner operator (Wigner, 1931). As a con­

sequence, these space functions form a basis for an irre­

ducible representation of , called the space represen­

tation : if k=d(NS)/Ni, 

PfgCNSa) = k I £(P') LP'lï'f (PP'ç) 
P g ; JjOt 

= k I e(?'^?") [p"^p"]^f (P"(J)) 
pli pCX 

= k I e(p-l)E(P") I[P"l]gS[P"]NS(p"*) 
p« Y py 

= e(? h IM £(?") [P"j^'f(P"ô)} LP 
y O.. YO/- ' ' ̂ ' -"SY 

= £(P) l4^(NSa) iP 1]^^ . (7) 

Comparison of (7) and (4) shows that the spin functions 

transform under P according to the matrix [P]^^, while the 

space functions (NSa) transform according to the trans­

pose of £(P)[P Thus there is a close relationship 
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between the spin and space representations: they are recip­

rocal to each other in such a way that the SAAP is anti­

symmetric . These representations are said to be dual 

(Kotani et , 1955). 

The spin-adapted antisymnaetrized products have been 

displayed in two equivalent forms. Either form demands a 

procedure for obtaining spin eigenfunctions, and one of 

them requires dual space functions. We shall see later 

how these might be obtained. First we examine the useful­

ness of SAAP's. 
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ELECTRONIC WAVE FUNCTIONS AS SUPERPOSITIONS 

OF SPIN-ADAPTED ANTISYMMETRIZED PRODUCTS 

Linear Dependence of SAAP's 

Any antisymmetric wave function that is an eigen-

function of S and S can be written as a linear combina-z 

tion of SAAP's having N, S, and M fixed: 

Y(NSM) =11 c(0,aXXlO(N)e^(NSM)] . (8) 
<? a 

If the sum over space products includes contributions from 

different configurations, Y is a configuration-interaction 

(CI) function. We assume for generality that this is the 

case. 

In (8), the sums run over every space product for the 

configurations of interest, and every spin eigenfunction 

for the given N, S, and M. In general, some of the SAAP's 

will then be linearly dependent. In order that the coeffi­

cients c(<p,a) will be unique and the secular equation will 

be soluble, it is essential to remove this dependence. Two 

sources of linear dependence are easily identified. 

Suppose that ¥ includes every SAAP containing the space 

product (}). SAAP's containing a space product $' =P(p differ­

ing from (p by only a permutation should not be included in 

Y. For 

>([<?'9^3 =^t(P4>)e^] = E(p)I[p''^]^^v4[*8g]. 
3 
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Thus any SAAP containing is linearly dependent on SAAP's 

already included in The additional one contributes noth­

ing new. 

It follows that, in (8), it is sufficient to sum over 

just those space products containing different orbitals. 

Double occupancy is a second source of linear depend­

ence. If a space product 9 contains a doubly-occupied 

orbital, there exists a transposition t=t ^ such that 

tç=ô. It follows that 

>4[(?e^] = o^(NSM) =-^[(t4))e^] =>^t[4)te^3 = ->^[<}>t©^3 

= -I 

= -I îtig® *g(NSM), 
6 

I . 0, or 6 

Thus the only way to avoid having all the SAAP's for given 

N, S, and M linearly dependent is to construct the spin 

eigenfunctions 0 (NSM) in such a way that 

it]Be = -^6a 

for every transposition t under which (p is invariant. A 

procedure for doing this is introduced in the next two 

sections. 
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Space Products 

It is possible to structure space products and spin 

eigenfunctions in such a way as to greatly simplify calcu­

lations on systems with double occupancy. For this pur­

pose, we will introduce two conventions. 

In the following, we shall refer to doubly-occupied 

orbitals as doubles, and to singly-occupied orbitals as 

singles. Two electrons labelled 2A-1 and 2A, where 

A=l,2,..., will be referred to as a geminal pair. Orbi­

tals containing a geminal pair of electrons will be said 

to occupy geminal positions. Two-cycle permutations of 

the form {2A-1,2A) will be called geminal transpositions, 

and a product of geminal transpositions will be called a 

geminal permutation. The subgroup of containing every 

product of the geminal transpositions 

(1,2), (3,4), ..., (2)i-l,2y), 

including the identity, will be called the geminal group 

Whereas we use P to denote a general element of 

a geminal permutation will be denoted by G, and a geminal 

transposition by g. 

The discussion of the last section showed that, of 

all possible space products containing the same orbitals, 

a CI wave function need contain only one - any one. We 

are free to make a convention as to how such a space prod­
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uct shall be chosen. We have assimed for convenience that the 

space orbitals are orthonormal. In addition, we adopt the 

following convention for the structure of space products; 

they will have all their doubles listed first, with ascending 

labels, followed by the singles, in the order of ascending 

labels. For example, of twelve possible space products con-

2 taining the atomic orbitals (Is) 2s2p^ , we pick the function 

4)^ = Lls(l)ls(2)2s(3)2p^(4)] . 

As in this example, space products containing % doubles 

will be denoted by that subscript: e.g., 9^ , Space prod­

ucts with the subscript ir are invariant under the geminal 

permutations belonging to , where 

Geminally-Adapted Spin Eigenfunctions 

There are infinitely many ways to make spin functions 

for given N, S, and K, corresponding to infinitely many 

equivalent spin representations of S^. We choose the follow­

ing convention for spin functions: 

(i) The spin eigenfunctions will be orthonormal. 

(ii) They will be constructed by coupling the 

spins of each geminal pair of electrons sep­

arately, then coupling the pair-spins to 

each other. If N is odd, the spin of the 

remaining electron will then be coupled 
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to the resultant spin. 

Spin eigenfunctions constructed in this way, using 

Clebsch-Gordon coefficients, were first described by Serber 

(19 34a, 1934b). They contain a singlet or triplet component 

for every geminal pair of electrons, and thus are either 

symmetric or antisymmetric with respect to every geminal 

transposition in . The Serber functions for N=4, S=l, M=0 

are : 

[a (1)3(2)+3 (Da (2)] [a (3) S ( 4)-S (3) a (4) ]/2, 

[a(l)a(2)B(3)B(4)-B(l)S(2)a(3)a(4)]//2, (9) 

[a(l)3(2)-3(l)a(2)] [a(3) S (4)+S (3) a(4) ]/2. 

We shall denote a spin function antisymmetric in the 

first 77 geminal pairs, but symmetric in the next one, by the 

subscript TT. If there are several such functions, they will 

be called (NSM), 9^^(NSM), etc. Using this notation, the 

functions in the example above would be labelled 8^^(410), 

8^2(410), and 8^^(410). As a result of the notation, 

= ^®7ra ^very g in S^, 

but in particular, 

gG^a = "®iTa 9 belongs to 3^^, , where 

These relations imply that the matrices representing 

geminal transpositions in the spin representation spanned 

by Serber spin functions are diagonal: since the functions 
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are orthonormal, 

= <e, , . g(NSM)|ge^^(NSM)> = ±<e, „g(NSM)|8^^(NSM)> 

= ±6 (-"3/^a) 

for every g in S^. In particular, if g belongs to3^^, , where 

Tr'^TT or /$7r", 

[g]^Mo = -Ô (7r"e,TTa) . 
li p / Jl Li 

Since geminal permutations G are products of geminal 

transpositions, we have the more general result 

[G]^Hg = ±ô(7r"B,-a) for every G in S^. 

In particular, if G belongs to , where or 

= £(G) ô(7r"3,Tra), (10) 

in which e(G) is +1 when G is even and -1 when G is odd. 

This result has a special consequence that will prove 

useful. We write "Gsj^^. " to mean "G belongs to 4/^/ "• Since 

every geminal permutation is a product of mutually commuting 

geminal transpositions, with a factor I or (2y-l,2y) from 

the ]ith geminal pair, the order of is 2^, and (10) gives 

I  E ( G ) [ G ] ® S „  ^ „  =  Î  e { G ) e ( G ) S t 7 r " S , T c i )  
Gsi(^, " S.Ttcc 

= 6 (7r"B,Tra) 7 (+1) , 
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or î e(G)IG]^L = 2"'S(7y"6,TO) (11) 

when or This result is, as we shall see, a great 

aid in simplifying the expressions for expectation values. 

Linearly Independent SAAP's 

The two conventions we have adopted further simplify the 

wave function (8) when the space products contain doubly-

occupied orbitals. We have already reduced the number of 

space products required to the bare minimum: one product for 

each choice of orbitals. The conventions reduce the number 

of spin eigenfunctions required. 

Consider the SAAP , where The geminal trans­

position g=g (2TT'+l,2Tî'-r2) , which belongs toj?/^ but not to 

, has the properties 

\ 9®77a = 

As a result, 

S O  that the SAAP is zero. In other words, if a SAAP contains 

a space product with doubles in geminal positions in which 

the associated spin function is not antisymmetric, then that 

SAAP vanishes. 

This result reduces the sum over spin functions in the 

CI wave function: we have now 
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= I I , (12) 
(D^ TT'a 

TT$-Iî' 

where the sum over space products includes only one prod­

uct for each choice of orbitals, and the sum over spin func­

tions includes only some of them. 

The wave function has been reduced to the bare minimum: 

the SAAP's in (12) are all linearly independent. In fact, we 

now show that they are all orthogonal. 

The overlap between two SAAP's with the same values 

of N, S, and M is 

= <N!)-^Ie(p)<e^^|pe^,g><^Jp^p>. 

Here we assume that and p'^p, for otherwise the SAAP's 

would vanish- The first integral on the right is the (ira,pg)-

element of the matrix representing P in the Serber spin repre­

sentation for N, S. Thus 

A = Ic(P) 

No two space products in the CI wave function contain the 

same orbitals, so <d> |P6 > is zero unless 6 =6 : 
' P ^TT ^P 
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The integral on the right is zero unless P belongs to the 

geminal group under which is invariant; 

A = -

Using (11), , , 
A = )6(na,pg).2^/N! (13) 

This proves that the functions 

rîLL^ 1/2 
(2*1 ^[4^(N)e^^(NSM)], 

where and only one space product is included for each 

choice of orbitals, form a complete orthonormal set spanning 

the space of N-electron antisymmetric wave functions having 

spin eigenvalues S and M. These SAAx- ' s are therefore effi­

cient building blocks for CI wave functions when S is a good 

quantum number. 

Energy Matrix Elements between SAAP's 

Constructed from Orthonormal Orbitals 

General formula 

The importance of the space and spin conventions intro­

duced in the last sections lies in the way in which they sim­

plify the calculation of expectation values. It has been 

shown that they facilitate the removal of linear dependence 

in the wave function. We new shew that they simplify the 

calculation of energy matrix elements. 
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It is assumed that the wave function (12) is constructed 

from orthonormal orbitals, and that the Hamiltonian is, for 

practical purposes, spin-free. Except for these conditions, 

our results will be perfectly general, and applicable to 

either atomic or molecular systems. 

The immediate result of (12) is that the energy is a 

sum of Hamiltonian matrix elements between spin-adapted 

antisymmetrized products. The problem is to express such 

matrix elements in terms of elementary one- and two-electron 

integrals. 

Just as SAAP's are generalizations of Slater determi­

nants, we shall obtain matrix element formulas which are gen­

eralizations of Slater's matrix element rules. Despite the 

fact that the derivations are complicated by group theory, the 

results are very nearly as simple as those for determinantal 

functions. Before proceeding to the derivation, we define 

notation and display the formulas obtained. 

We consider the two SAAP's (N) (NSM) ] and 

>4 (N) (NSM) ] , where the space products are 

4^ = *1"2 

(14) 

and = P1P2 PN • 

Here and are the orbitals occupied by electron k in 

é and <p . According to convention, 6 and ô contain TT and 
TT ^ p ^ ^TT P 
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p doubles, respectively. It should be noted that an orbital 

TT^ in 4)^ can occur also in cjj^, and an orbital in ({>p can 

occur in 9^. We write, for example, and to 

denote the occupancies of in (j)^ and cp^. 

It is assumed that (p^ and differ by no more than two 

orbitals, and that ITand p$p'. Otherwise, the energy matrix 

element is zero. 

There is a permutation, <C , that rearranges 4)^ so as to 

place it in "maximum coincidence" with This means that 

(dCÇp) and are identical except possibly for the orbitals 

occupied by one or two electrons. 

We break down the Hamiltonian in terms of the one-

electron Hamiltonians h^ and the electronic interactions g^^; 

H = I I 
i<j ID , 

where = (N-1) ^(h^+h^) + g^^ . 

The general formula for the energy matrix element turns 

out to be [when the SAA?'s are normalized according to (13)] 

= e(<U J I N(ir. ,11. :p ,p ) X 
- 3 - s 
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in which 
= {!i} when L is , 

fn(TT. ,0 )n(7r. )n(p )n(p )il/2 

n(.,,..;p^P3) ^ 3 ' ̂  

[l+6(Pr,Pg)] ' 

) %, p'6 = (KSM) IF I Sp'B WSM) > , 

<7r^Trj I p^pg> = // 7rt(i)7r^ (j)H^jP^(i)Pg(j) dx^dx^ , 

and p^ and p^ are the orbitals occupied in (&$p) by elec­

trons i and j, respectively. 

If Ô =0 / the sum in (15) is over every distinct pair 
7T P 

of orbitals in the space product. For example, if is a 

double, but and are singles, then the sum may include 

the pairs (17^,-2), (11^,^^), in which case 

it does not include (772,71^). Or it may 

include (7:^,772)/ in which case 

it does not include (%2,n^), or (Ti^,7r^) . In other 

words, doubles do not contribute duplicate terms to the sum. 

When <|>^=C}>p, the alignment permutation is jL=I. 

If <{)^ and differ by one orbital, the sum is over 

every distinct orbital pair in containing the differing 

orbital. For example, suppose that a, b, c, d are orbitals, 

and <J)^=7r^TT2TT2Tr^=aabc while (})p=p^P2P3P4=abcd. The differing 

orbital in 4>^ is a, and in cp^ is d. Then the sum in (15) may 

include the orbital pairs (7:^,712) = (a,a) , (77^,71^) = (a,b) , and 
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(171,774) = (a,c) , but not or (^2,%^) as well. In this 

example, <L = (1,2,3,4) . 

If and cpp differ by two orbitals, the only term occur­

ring in the sum is that for which ir^ and ir^ are the differing 

orbitals. 

The full power of the SAAP formalism becomes evident when 

one evaluates the matrix element in specific cases, express­

ing it in terms of one- and two-electron integrals. We save 

the derivations until later, and give here only the results. 

Case when (6 =6 
TT 

In this event, p =i t. , p = 7 7 . ,  andJC =I. Writing 
r 1 s ] 

n(T7^) = n(T7j^,(J)^) = n(77^,cj)p), we have 

= 6(77a,p'e) I {n(T7^) <77^1h|77^> + [n(77^)- l]<T7^T7^|glTT^77^>} 

^i 

+  I  I  n C - i ï  j _ ) n  ( 1 7 ^ )  { 6  ( T 7 a , p ' ' g )  < 1 7 ^ 7 7 .  j g l  7 7 ^ 1 7 .  >  
77 . <77 . ^ ^ 
1 ] 

the sums being over distinct orbitals (i.e., only one from 

2 each double) , Here g=(e and h is a one-electron Hamil-

tonian. 

Case when and differ by one orbital 

Let the differing orbital be 77 in 6 and p in 6 . = p ^77 ^p 

Then 
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= z{L) x 

+ [n(p^,9p)-lJ<TC^P„|g|p„p^>} 

where the sum is over distinct orbitals in 4*^ other than the 

orbitals i r  and p _ .  A  double makes only one contribution. 
y a  

Case when ô and differ by two orbitals —TT —p —^ 

We take the differing orbitals to be ir^, ir^ in and 

p , p in ô . There are no sums in the formula and no one-
c T ^p 

electron integrals arise. The result is, then, 

=  N  P ^ , P T)  •£ (cL) x 

VT=-

-•t(p,v)J:,!^?^p,j<ïïj^7r^|g|p^p^>}. (18) 

Discussion 

These formulas are very nearly as simple as Slater's 

rules for matrix elements between determinants (Slater, 1929), 

the difference being that certain delta functions for one-

electron spins have been replaced by spin representation 
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matrix elements for the permutations Ji and (i,i)'&. 

Formula (15) was first obtained, in a slightly less 

simple form, by K. Ruedenberg (private communication, Iowa 

State University, Ames, Iowa, 1968). The formulas shown here, 

as well as formulas for the matrix elements of p-electron 

operators and pth-order reduced density matrices, will be 

reported by Ruedenberg and Poshusta (1971). 

There have been previous attempts to obtain formulas 

of this type. Kotani et (1955) used group theory to sim­

plify the expressions for energy matrix elements between 

spin components of determinantal functions. Harris (1967) 

extended this work, and gave closed- and open-shell formulas 

for matrix elements of one- and two-electron operators, with­

out assuming that the orbitals are orthogonal. Even with this 

assumption, his results were complicated, involving sums 

over many permutations. Karplus et a_l. (1958) obtained matrix 

element formulas for one-electron operators. 

The case when the wave function is expressed as one SAAP 

is similar to the extended Eartree-Fock approximation of 

Lowdin (1955b, 1960). Matrix elements for spin-free operators 

in this formalism were obtained by Pauncz, de Heer, and 

Lowdin (1962) for application to the alternant molecular or­

bital method. The formulas were generalized by Pauncz (1962, 

1969). The results involved various complicated coefficients, 

closed expressions for which were found by a number of work-
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ers (Perçus and Rotenberg, 1962; Sasaki and Ohno, 1963; Smith, 

1964; Shapiro, 1965; Smith and Harris, 1967). Reviews have 

been given by Harris (1967) and Pauncz (1967, 1969). 

The formulas presented here avoid these difficulties. 

Their close relation to Slater's rules is emphasized by the 

ease with which they can be reduced to those rules when the 

SAAP's involved happen to be Slater determinants. Consider, 

for example, the case when 6 =6 and M=S=^: 0 , =© /o=aa**-a . 
^ ^ir 2 ïïa pp 

Since these spin functions contain no antisymmetric factors, 

it must be that 7r=p=0 and n(iT^)=l for every orbital in 

(|)Q. We have ô(7ra,p'S)=l and 

I(i/j)]^'^ p'g=<aa* •-a ] (i, j) aa* • •a> = 1 

in (16). The result is the formula 

<>A [<î)Q (aa* • «a) ] lH|y4[(<)Q (aa* • - a) ] > (19) 

= I <7r^|h^j7r^> + I ^{<TT^7r. ig^. l7r^Tr.>-<7r^Tr. |g^. lT:.Tr^>}. 
TT. IT. <Tr. J J J 
1 ID 

Since [(J)q (aa* • «a) j = (aa* • •a)>4[<{iQ], (19) is the formula 

for the matrix element <^^$Q)|H|X($Q)>, where consists 

entirely of singly-occupied orbitals. Thus ((^^) is a "space 

only" Slater determinant, and (19) is analogous to the famil­

iar formula for the energy of a determinantal wave function. 

Appendix D contains a listing for a Fortran program to 

implement formulas (16)-(18). It finds the alignment permu­

tation L, evaluates the representation matrix elements for 
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Jo and (i/j)<£j from knowledge of the spin functions, and cal­

culates the coefficients of the one- and two-electron inte­

grals occurring in the energy matrix element between two 

SAAP's. This program was based on earlier, more complicated, 

formulas than those given here. An updated version is being 

written. 

The Serber spin functions used with this program will 

be discussed in the next chapter. As is mentioned there, it 

is found more convenient to generate the spin functions and 

then obtain the representation matrices from them, than to 

calculate these matrices directly. 

Derivation of the General 

Energy Matrix Element Formula 

We seek to evaluate the integral 

where p^p', and the sum runs over all of . Since the 

Hamiltonian is assumed to contain no spin operators, space 

and spin separate: 

= , (20) 
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where we have used the fact that H is Hermitian. 

In terms of the one-electron Hamiltonians h^ and the 

electron repulsions , the N-electron Hamiltonian is 

H = I h. + I I . 
i ^ i<j 

In order to simplify the derivation that follows, we shall 

write 
H = H,. , 

in terms of the operators 

= (N-l)"^{h^+hj) + g^j. 

Thus the Hamiltonian is written in terms of two-electron 

operators. From (20), we have 

the sums on i and j being over electron labels, and the sum 

on P being over the symmetric group, S^. The rest of the deri­

vation is devoted to the simplification of this equation. 

Reduction of the sum over permutations 

We assume that and ({>p are the following products of 

orthonormal one-electron orbitals: 

4)^(1,2, ,N) = TT^d) ••• TTjjCN), 

<})p(l,2, ,N) = p^(l) ••• pjj(N). 
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We write (41 ), . ^ to denote that part of $ occupied 

by electrons For example/ (4p)^ = Then 

This integral is zero unless <%^|= 1 for every k 

other than i and j. 

It is clear that not every P in (21) will make a nonzero 

contribution to the i,j-term. Suppose that is a permu­

tation aligning <p with <J) in such a way that (Q. 
P  7 1  I j  P  ^  

for every k other than i and j. Then 

Furthermore, for any geminal permutation G in , G$p=$p and 

lOijGfp) = ^ »• 

Thus the set of permutations makes nonzero con­

tributions to the ifj-term in (21) . We will show that other 

permutations may do this. 

The two orbitals from that are occupied in (QUjOp) 

by electrons i and j are uniquely determined by the condition 

that <H. .0 1Q. .<I> > not vanish. Let these two orbitals be 
1]^?' 1] p r 

and Pg: 

<Qii*pli = "r ' (Qii^p'i = "s-

This is not meant to suggest that r and s are uniquely deter­

mined by i and j. If p^ or p^ is a double in $p, then there 
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may be more than one possible value of r or s. 

We see that is a rearrangement of that coin­

cides with (})^ except possibly in the orbitals occupied by 

electrons i and j: 

K = ^1 "i-l'^i'^i+1 ••• ^j-l*^j*Vl "* ""N ' 

(Oij*p) = ^1 %i_l'Pr'^i+l %j_i'Ps'"i+l • 

In order to suggest this, we adopt the notation for Q^j. 

The reader should note that has the following properties; 

(i) (i/j)Q^^ = Qj^*(r,s) = ; 

<"> Ors = Oir • 

It is easy to see that not only 

but also 

Clearly every permutation making a nonzero contribution to 

the i,j-term of (21) is of the form 

(OrgG) or [(io)Qj^G], (22) 

where G is a geminal permutation belonging to 4)p « 

The result is that the sum over N! permutations in (21) 

reduces to a sum over just those permutations with the forms 
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(22) . It must be kept in mind that these permutations may 

not all be distinct. The sets 

{Q^^GlGe^p} and { (i, j) Qf;jG |Ge3^J^} (23) 

each consist of distinct permutations. We now investigate 

the conditions under which the sets may overlap. 

The two sets share an element if and only if there are 

two geminal permutations G and G' in such that 

(i'i)QrsG' = Ori= 

II 

Q^i'(r,s)G' 

But then (r,s) = (Q^^) "^QJJG G ' •  

Thus "tQ^gG} and {(i/j)Q^^G} = {Q^i'(r,s)G} share an element 

only if (r,s)£jàpî in fact, then they share all their elements. 

Therefore, the sum in (21) over all permutations re­

duces to a sum over the permutations in the two sets (23), 

but this sum should be divided by two if r and s are in gemi­

nal positions and (r,s) (i.e., if Pj-^Pg) • Using this re­

sult in (21), we obtain 

or 
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E = I 2 I c(G) X 
i<3 Sei/p 

- [(i,j)Q^^Gl«,= ̂p,j<H...,,r.lp^p^>}, 

where ô(p^,pg) is the Kronecker delta. 

This result can be simplified by noticing that 

(i) for any permutation P, = 1^1 A,p'6lGJp|,p's 

because the matrices representing geminal permuta­

tions are diagonal; 

(ii) I E(G)[G]N,S = 2^, from (11). 
Ge^ PP'PP 

Thus we obtain 

-A(P ,P ) .. 
E = (2P/NI)I I 2 ^ ® E(Q ]) X 

i<j 

> 
s " (:Qrs]^t,p%<Bii*i%ilPrP! 

- I(i,j)Qj^]^?^p-g<H..7r.Tr.|p^p^>l, (24) 

the sums running over electrons. 

Reduction of the sum over electron pairs 

Equation (24) contains redundancies. Suppose that 

We make the following observations: 

(i) It must be that k=i±l and (i,k) is a geminal 

transposition. 
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(ii) The integrals arising from the k,j-term in 

(24) are I Pj-Ps^ ^^kjVjlPs^r^ ' 

having the same values as 

and , the integrals arising 

from the i,j-term. Orbitals p^ and p^ are 

the same in each case. 

(iii) The alignment permutation arising from 

the k,j-terra is 

Q^i = (i,k)Qii [not (i,k)oii(i,k)-l], 
iS io — JL O 

and since (i,k) is a geminal transposition 

belonging to , 

Similarly, 

As a result, if , the k,j-term in (24) makes the same 

contribution as the i,j-term. Generalizing this, all cases 

can be summarized as follows: 



www.manaraa.com

33 

the number of equal 
if IT. is: and tt • is: contributions in 

^ ^ (24) is: 

double same double 1 

double different double 4 

double single 2 

single double 2 

single single 1 

In general, the number of equal contributions is 

[d. ̂ (* ) -6 (TT -
2 ^ J ^ J 

where d..(6 ) is the number of doubles in 6 represented by 
I j • TT TT 

the orbitals and . 
^ ] 

Equation (24) is simplified by collecting together all 

the equal terms, summing only over distinct contributions. 

This is the same as suiriming over different pairs of orbitals 

in o_. Normalizing the SAAP's according to (13), we have 

E = y y % 

J 

where 
p(i,j;r,s) = [(p-%j/2jTd^j(*_)-Ô(^^,Wj)-6(p^,Pg). 

The meaning of zhe sum needs clarification. If 

the sum runs over every distinct pair of orbitals. For ex­

ample, if =17, •iï^~^~^=&abc, the sum includes the orbital 
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pairs (a,a), (a,b), (a,c), and (b,c). Each of these appears 

once: doubles do not cause duplicate contributions. If A 
Mr 

and Ô differ bv two orbitals, and in then the 
P ^ P Ct TT 

sum reduces to the one term with and Tr^=TT^. In every 

other term, the integrals are zero. If and differ by 

one orbital, ir^ in , then the sum is over every distinct 

orbital pair in that contains ir^. For example, if (p_^=aabc 

and (p =aabd, then the sum is over the orbital pairs (a,c) , 

(b,c) . 

If TT^ or TTj is doubly-occupied in (j)^, there is an am­

biguity in the meanings of and which are defined 

in terms of electron labels. We adopt the following conven­

tion: whenever double occupancy in or Uj makes the choice 

of i or j ambiguous, we choose the lower electron number. 

If, for example, $^=aabc and $p=ddbc, so that n^=%j=a is the 

only orbital pair occurring in the sum, i and j are unambig­

uously defined to be 1 and 2 (it does not matter which is 

which) . On the other hand, if $^=aabc and $p=aabd, then the 

sum contains a term with n^=a, 7ij=c, for which we choose 

i=l and not i=2. 

It is not necessary to have a different alignment permu­

tation for each term of (25) . Let <L be a "maximal alignment" 

permutation for and (j>^ which, when operating on (p^, has 

the property that orbitals common to (<)^ and tp^ are occupied 

by the same electrons in 6 and («C4> ) . This means that the p 

differing orbitals in (p_^ and are also occupied by the 
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same electrons. The electrons occupying the differing orbi-

tals in are unambiguously defined by the convention adopt­

ed for i and j. 

Any with this behavior will perform the duties of 

every in the sum of (25). Thus we obtain a simpler result; 

= c(X,) I I 

-  •  ( 2 6 )  

The exponent of two appearing in this equation is 

p(i,j;r,s) = [ (p-r r)/2] + - <5(P^,Pg),  

a number apparently not symmetric in its arguments. However, 

® i j -  ® i j  '  

where TT. . = p is the number of doubles in other than IT. 
1] ^RS TT 1 

and TTj or the number of doubles in <J)p other than p^ and P^. 

Thus 

p(i,j;r,s) = [i-n/2) - (n\j/2) - 5(11^/7:^)] 

+ [(p/2) - (p^g/2) - ôCp^fPg)] 

= - 6(%\,nj)] 

+ " G(Pr'Ps)]' 
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or 

where 

and 

p(i,j;r,s) = p(i,j) + p(r,s), 

p(i/j) = 

p(r,s) = ) - ô(p^,pg)]. 

This can be cast into a form more convenient for pro­

gramming by noticing that 

\ [1+6(11^,77.)]^ I 

a result obtained by considering all possible cases: 

"i 

fn{7r.,(f> )n(Tr. ,9 J"\l/2 

i—— "̂-̂ 1 [1+6 (TTj^/TT^) 3 

double same double 

double different double 

double single 

single double 

single single 

I - ̂  

1 - 0  =  1  

1 
"2 

1 - ° i ° 
1 
2 
1 
2 

0 — 0 = 0 

(4/8) 

(4/1) 

(2/1) 

(2/1) 

(1/1) 

1/2 ̂  

1/2 _ 

1/2 _ 

1/2 _ 

1/2 _ 

1//2 

2 

/2 

/2 

1 

We obtain the final results 

2P(i'i/r,s) ̂  ;p^,pg) 

[l+5(ni,nj)]3[i+5(p^,pg)]3 
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and 

= e(ij) I I N(n^,n.;p^,pg) % 
TTi^TTj 

This is the general energy matrix element formula quoted in 

(15) on page 20. It is also, of course, the matrix element 

between SAAP's of any operator expressible as a sum of two-

electron operators. 

The only properties of the spin eigenfunctions that 

were used in deriving this equation were those of (10) and 

(11). In other words, we have assumed that the spin function 

in a SAAP is antisymmetric in every geminal pair which is a 

double in the space product. We have also assumed that the 

spin functions can be labelled 0^/^ , indicating that the 

functions are antisymmetric in the first ir' geminal pairs, 

and symmetric in the next one. As we shall see, Serber spin 

functions are not the only ones with these properties. It 

will turn out, though, that Serber functions are particularly 

easy to generate. 



www.manaraa.com

38 

Derivation of the Matrix Element Formula 

in Specific Cases 

The general formula derived above needs no discussion 

when 4)^ and 4)^ differ by two orbitals. The sum reduces to 

just one term, and no one-electron integrals arise. One ob­

tains (18) immediately. The other two cases are more compli­

cated , however. 

Case when 
—IT —P 

In this event, Pg=7r^, and the alignment permuta­

tion is «0=1. Defining n(n^) = n(Tr^,4)^) = n(TT^,4)p)/ 

2 = 1 I {n(iT.)n(Tr.)/[l+6(7r ,Tr.)3^} x 
•ÏÏ.S-ÏÏ. ^ ^ 

J 

X {ô(TTa,pe)<H^jTT^T7^ lTT^TTj> - E ( i . j ) ], p'g^^^ jj I ^ j 1 • 

Breaking the sum into terms with (when is a double) 

and terms with , and substituting the definition of 

one obtains 

2 
E = ô(7ra/p'B)^ [n(77^)-1] Î 1 g| iTiTT^>] 

^i 

+ y I [n (iT^)n(ir.) ] x 

X {ô(na,pg){(N-l) ^[<iT^lh I  Tr^>+<iTj  |h j TTj>]+<Tr^TTj  lg j i r^TTj>}  
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2 where g=(e and h is a one-electron Hamiltonian. 

Since 

I I n(n.)n(n.)[<%.|h| %.>+<%.|h|n.>] + 2% [n(n.)-l]<%.|h|n. 
7r.<7T. J ^ ^ IT. 
1 ] 

= (N-l)% n(iT^) <Tr^lh|Tr^> , 

the final result is 

E = 6 (TTo,p6) I {n(7r^) <7r^lh| Tr^> + [n (ir^)-1] <7r^ir^ J g 17r^7r^>} 

^i 

+ I I n(Tr^)n(Tr.) X 

where the sums run over distinct orbitals. This is the re­

sult quoted in (16), on page 22. 

Case when ̂  and ̂  differ by one orbital 

Suppose that the differing orbital is in and 

ç . There is only one sum in the matrix element; P 

E = e(L) N(LT^,7TJ;P^,TTJ) X 

where the sum is over distinct orbitals in (j) that are also 
TT 

in 4)p, and 
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N(TT^,TTj;p^,Trj) - ̂  
,<l>^)n(Tr^,4>^) ̂  1/2 

[l+6(n^,nj)]3[l+a(pp,nj)]3 / 

This case is much more complex than the other two. If 

TT^ or is a double, the sum includes a term with ir^ equal 

to TT^ or p^. It is possible that ir^ occurs in (i)^, and can 

occur in 4)^. Altogether, there are twelve possible cases, 

shown in Table 1. 

Using [n(n^,#^)-l] as a "delta function" for double occu­

pancy in TT^ in 4)^, the matrix element breaks down as follows: 

E = eU)W;f,^g{[n(n^,*^)-l][2n(P,,*p)]l/2 % 

x[(N-l)"l<w^|h|Pp> + 

+ [n(Pg,4p)-l][2n(w^,*^)]l/2x 

x[(N-l)"^<n^|h|Pp> + <*yPg|g|PgPp>]} 

+ e(X.) l  [n(w ,$^)n(n.x 

"j 

The coefficient of <%^|h|Pg> in this equation contains the 

quantity 
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Table 1. Situations occurring when 4)^ and (j)^ differ by one 

^y Example^ Pa ^j 
b 

Example 

(in of (in of 

s s (yj/*•«m) s s (CTj/*•«m) 

d s (mj/' • «m) 

d = d (jj/' • «m) 

s d (yj/** • jm) s d (0 j/... jm) 

d d (mj/* • • jm) 

d s (yj/'•-ym) s s (cj/** «ym) 

d s (mj/-•«ym) 

d d (jj/' "ym) 

d 7^ d (yj/* • 'y jm) s d (aj/'''yjm) 

d 7^ d (mj/'''yjm) 

d = d (j j/* • '5i) s s (a j/' ' «m) 

d s S
. 

^Notation: "d" means double, "s" means single. 

^In the examples, orbitals are represented by their sub­

scripts . The orbitals occupied by electrons y and j are 

listed to the left of the slash. The differing orbital 

is listed first. 
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71 â [2n(Pp,*p)]l/2+[n(Pp,*p)-l] [2r. (TT^,<J)^) ] 

V rvv/rr A * A 1^/2 + [a(n^,*^)n(pp,9p)] ^ I 

lu can be seen from Table 1 that, when does not equal TT^ 

or p , it is a double or single in both ù and cp^. Thus • IT ^ p 

1 /2 
> [n(%.,6 )n(7T.,Q ) ] "' = 2'(number of doubles other than 
% : IT D P 
•j and p^) 

(?Ti,^/P^) T 1. (number of singles other than 

TT and p ) 
li 

= number of electrons occupying orbitals 

other than rr and p -

Because of rhis, the oossible values of are: 

9%) Zpfia 9p) 1% 

s s [C+0+ 1 (N-1) J = (N-1) 

s d [0+^2^/2-(N-2) ] = /I(N-l) 

d s [/2+0-i--/2-(N-2) ] = -/2(N-1) 

d d [2+2+ 2 (N-3)] = 2(N-1) 

The result is that ^ = (N-1) [n(ir^^,(j)_}n(p^/(J)p) and so 

zha matrix element is 
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E = [ii(Tr^,<J)^)n(p^,(})p) ] e(L) x 

+ [n(Pg,$p)-ll<n^Polg|p^P„>} 

This was the result quoted in (17) on page 23. 
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GENERATING SPIN EIGENFUNCTIONS 

WITHOUT USING GROUP ALGEBRA THEORY 

Construction of Spin Eigenfunctions 

by Spin-Coupling Techniques 

Yamanouchi-Kotani functions 

The entire spin space for N electrons is spanned by the 

2^ elementary spin product functions 8^(NM): 

©l(N,|) = [a (1) a (2) • • • a (N) ] ; 

{0j^(N,|-l)} = {[3(l)a(2)-.-a(N)], ... , [a (1) a (2) • • • 3 (N) ] } ; 

0^(N,-|) = [0(1)3(2) -.-SCN) ] . 

Of these, the products {e^(NM)|k=l,2,...,^N^^^} span the 

part of the N-spin space that is specific to S^-eigenvalue M. 

On the other hand, this subspace is also spanned by spin 

eigenfunctions (NSM), where j and S take on all possible 

values. Thus there is a transformation from the elementary 

spin products to the spin eigenfunctions: 

©J (NSM) = I ©^XNM)Y%J(NSM). (27) 

Here the product functions ©^(NM) belong to the reducible 

direct-product spin space for N fermions. The coefficients 

y, . must be chosen in a special way that forces ©.(NSM) into 
] 
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a subspace for the irreducible spin representation defined 

by N and S. 

This is special case of the vector-coupling problem 

solved by Wigner (1931). The solution is given stepwise, by 

coupling spins one at a time. One starts with the spin of a 

single electron, couples it to the spin of another, and pro­

ceeds by coupling the spin of the Nth electron to the re­

sultant spin of the first (N-1). At each stage, there are 

two ways in which one can obtain spin S for N electrons. 

Pictorially, 

This sort of spin-coupling picture is called a branching dia­

gram, and the two routes shown correspond to the two equations 

N-1 

N 

S 

s'=S-l/2 

6J(NSM) 

(28a) 

and 

© J (NSM) 

(28b) 
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The coefficients appearing here are examples of Clebsch-

Gordan or Wigner coefficients, which guarantee that the 

Gj(NSM) form an orthonormal basis for an irreducible repre­

sentation of 

In applying these equations recursively for given N, S, 

and M, cne makes a spin-coupling choice at each stage - a 

choice between Equations (28a) and (28b). In the end, there 

are a number of ways in which N one-electron spins can be 

coupled so that the resultant spin is S. Each of these "spin-

coupling schemes" is labelled by a value of the subscript j 

in (28) . The schemes can be represented pictorially as routes 

on an N-electron branching diagram like the one given in Fig­

ure 1, where we have given at each intersection the number 

of spin functions resulting for the corresponding values of N 

and S. This number, which is independent of M, is 

Thus, for example, there are three spin eigenfunctions for 

N=4, 5=1, for each value of M. 

Since each N-electron spin function is derived from a 

chain of predecessors, this procedure is often called a "gen­

ealogical construction". It was introduced by Yamanouchi 

(1936, 1937, 1938), and a full account has been given by 

Kotani et (1955). We shall hereafter refer to spin func­

tions constructed according to (28) as Yamanouchi-Kotani (YK) 
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f 

5/2 

3/2 

1/2 

N 

Figure 1. Yamanouchi-Kotani branching diagram 

spin functions, and to Figure 1 as a YK branching diagram. 

The YK functions are a basis for a very special orthogo­

nal representation of . Not only are the matrices represent­

ing permutations in fully reduced, but it will be observed 

from (28) that the representation of the subgroup is also 

reduced. In fact, the recursive nature of these equations has 

the result that the representations of the subgroups SQ_^, 

^N-2' ^1 all fully reduced. The YK spin repressnta-
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tion is said to be adapted to the sequence 

^N-1' ̂ N-2' ' ' 

of nested symmetric groups (Klein, Carlisle, and Matsen, 

1970) . We shall return to this point later. 

Serber functions 

In the last chapter, we found it useful to have orthogo-

nal eigenfunctions of S and that were simultaneously 

eigenfunctions of all the geminal spin operators S (2^1-1,2y) , 

where y labels a geminal pair of electrons. Such functions 

were first obtained by Serber (1934a, 1934b), using a genea­

logical procedure in which spins were coupled two at a time. 

Assume for the moment that N=2n is even. Then, defining 

geminal spin functions w (s. ,m ) for the uth geminal pair, 
y H 

w^(l,l) = a (2y-l) a (2u) , 

w^ (1,0) = Ea(2]i-1) S(2y)+p(2u-l)a(2u) ]//2, 
^ (29) 

w^(l,-l)= 3(2y-l)3(2u) , 

w (0,0) = [a(2y-l) 3(2y)-3(2u-l)a(2u) ]//2, 

it is possible to make 2n-electron spin eigenfunctions from 

these: 

0 (NSM) = y c (m, ,m ) [w, (s, ,m, ) ••• w (s ,m ) ] . (30) 
ira {m } niii nnn 

Here the sum runs over all choices of such that 

Zmy=M. Since each s^ is fixed, the functions (30) will be 
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automatically eigenfunctions of 5^X2^-1,2%) for each y. The 

subscript "TT" on 0^^(NSM) indicates that 

s,=m,=s^=m-= =s =m^=0. 
1 1 2  2  T T  i r  

Thus 9^^(NSM) is antisymmetric under the geminal transposi­

tions of 

Each geminal spin function w, (s,,m ) belongs to an y y u 

irreducible representation F(s ) for two electrons, so 
"î  

(NSM) automatically belongs to the space for the direct-

product representation 

r(s^) 0 [(Sg) ® ••• 0 r(s^). 

The coefficients must be chosen in a special way that forces 

0 (NSM) into the irreducible space defined by N and S. Tra c ^ 

As before, the solution is given stepwise, in this case 

by coupling spins two at a time: 

X e (N-2,s ' ,M-m ) -w (s ,m ) (31) 
Tra n n n n 

Here 0_^^(N-2 ,s ' jM-m^) is an (N-2)-electron spin function for 

spin s'. Since s^ can be 0 or 1, s' can be S+1, S, or S-1. 

The numbers W (s',s ,S;M-m ,m ,M) are the Wigner coeffi-
Tra n n n 

cients. 

There are four equations like (31), corresponding to the 

four spin-coupling ("branching") routes shown in the follow-



www.manaraa.com

50 

ing diagram: 

N-2 

s'=S+1 

N-2 

s'=S S 

s'=S-1 

N-2 

The ren Wigner coefficients involved are available in stand­

ard references (Wigner, 1959, p.. 193; Condon and Shortley, 

1951, p. 76), 

The different subscripts ira occurring in (31) corre­

spond to different routes on a Berber branching diagram like 

that in Figure 2. As in the previous case, the values of d(NS) 

are shown at each intersection. 

It follows from (31) that Berber spin functions are a 

basis for a representation of that is adapted to the se­

quence 

of nested symmetric groups. It also follows from this equa­

tion that the representation of every geminal two-electron 

subgroup is fully reduced. These facts will prove useful 

^N' ̂ N-2' ̂ N-4' ^2 



www.manaraa.com

51 

S 

À 

I 

1 
a. 

5 20  

9 : 28 90 

14 5 

1 

1 3 

2 1 

0 2 4 6 8 10 

Figure 2. Serber branching diagram for states leading to 

N=10, S=1 
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later on. 

"Serber-type" functions for odd N can be made by coupling 

the spin of the Nth electron to Serber functions for N'=N-1. 

The resulting functions will then have Serber-type behavior 

up to electron N '. 

Comparison of YK and Serber functions 

The differences between YK and Serber spin functions 

are not made obvious by the branching diagrams. Figures 1 and 

2. The easiest way to reveal the differences is to examine 

the functions resulting from both genealogical schemes when, 

say, N=4, S=l, M=0. We use the notation introduced previous­

ly, and show with each function its branching route. 

The YK functions turn out to be 

/\/ : 0̂ (410) = (a3-5a) (aS+Sa)/2; 

: 02(410) = [2aa3S-2B3cxa-(a3"j'Sa) (a3~Ba) ]/2/3; 

/ 
/ : ©2(410) = iaaB3-S3aa+(a3-i-3ci) (aS-3a) ]//6. 

On the other hand, the Serber functions are 
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to 

/  •  @ 0 2 ( 4 1 0 )  =  ( a B + B a )  ( a g - g a ) / 2 .  

The Serber functions are symmetric or antisymmetric in 

each geminal pair: they are simultaneous eigenfunctions of 

^2 ^ 2 2 
S , S^, and s^. The YK functions are less simple. The 

first one happens to be the same as the Serber function 0^^ 

because its branching diagram unambiguously fixes the spin 

of the first geminal pair to be zero. Since the total spin 

is one, the spin of the second pair must be S2=l. In the 

other two YK functions, the spin of the first geminal pair is 

unambiguously s.=l, but the second pair has no definite spin. 

In other words, the functions ^^(3. G, are simultaneous 

eigenfunctions of S , and s^, but not of s^. This is be­

cause either £^=1 or S2=0 can couple with s^=l to give 8=1. 

Rather than containing a pure contribution from S2=l or Sg^O, 

the YK functions 6^ and contain mixtures of both. 

However, these functions can be labelled with the sub­

script "TT", just as the Serber functions were. One merely 

defines the YK function Y (NSM) to be one for which the 
ira 

branching route has the form /\ for the first ir geminal 

pairs, then turns upward for the next. In the example above. 

®1 ^11' ®2 "01' ®3 ^02 • 

The consequence of this notation is that the YK function 

Y_ and the Serber function 0 will both be antisymmetric 
nOL Tra 

in the first TT geminal pairs, symmetric in the next, then 
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bear no fixed relation in the rest. 

As was pointed out in the last chapter, this is the only 

behavior required of spin functions in the SAAP formalism. 

Either YK or Serber functions can be used, the choice depend­

ing on convenience in generating the functions. 

Practicality of spin-coupling techniques 

The genealogical construction of spin functions is in­

convenient because it is recursive. In order to make an N-

electron spin function, one must first generate every pred­

ecessor in the genealogical scheme. It can be seen from the 

branching diagrams that the complexity of the problem in­

creases rapidly with N. 

In order to make the three YK functions for N=4, S=1, 

M=0, one must generate the following fifteen functions; 

N S functions M values required total functions 
for each M 

1 1/2 1 +1/2, -1/2 2 

2  0  1  0 . 1  

2 1 1 1, 0, -1 3 

3 1/2 2 +1/2, -1/2 4 

3 3/2 1 +1/2, -1/2 2 

4 13 0 3 

15 

The calculations are so simple that this is no problem. But 

there are 90 spin functions for N=10, S=l, M=0. In order to 

get them, one must generate 660 functions altogether, some 
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containing as many as 252 product functions. 

At least one computer program is available for YK func­

tions (Mattheiss, 1958), but the genealogical construction 

of spin functions is practical only for small N. In other 

cases, the programs require too much storage. 

Lowdin's Projection Operators 

3y inverting (27), one can express any elementary spin 

product function Gj,(NM) in terms of all the spin eigenfunc-

tions 8_. (NSM) having the same N and M: 

e, (NM) = y I 8. (NSM) C.I (NSM). (32) 
^ S j ^ ^ 

It is apparent that the quantity 

I ©. (NSM)c., (NSM) (33) 
j J 

is the projection of the spin product Sj, (NM) on the subspace 

for spin-eigenvalue 5, a subspace spanned by the vectors 

(NSM) I all j}. This quantity is also called the S-component 

of «^(NM). Equation (32) says that, in general, an elementary 

spin product function may contain components for every value 

of S. 

Lowdin (1955b, 1960, 1964) has introduced the operator 

r A2 
= 1 I i ^ j (34) 

s' Ls(s+i)-s'(S'+l) J , 

(T^S) 
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which, when operating on 9^(NM), successively annihilates 

every spin-component except the one shown in (33) . Thus 6g 

projects an eigenf unction of S from any spin product func­

tion. 

The application of (34) is straightforward, since the 

Dirac identity gives (McWeeny and Sutcliffe, 1969) 

S^e^(NM) = [(M^+|)I -r I ^ (NMk) • (u,v) ]©Ĵ (NM) , 

where I is the identity permutation, (ii,v) is the transpo­

sition interchanging electrons y and v, and 

(NMk) = if the spins of y and v 

If 6g is applied to all the spin products for given N 

and M, the results will be redundant, but enough linearly 

independent spin eigenfunctions will be generated to span the 

spin-space for N and S. Lowdin (1964) has developed a pro­

cedure for choosing spin products that lead to independent 

eigenfunctions. A computer program is available (Rotenberg, 

1963) . 

The resulting functions can be orthogonalized without 

difficulty. In order to obtain the sort of spin functions 

which are useful in the SAAP formalism, however, one must 

transform the Lowdin spin functions by diagonalizing the 

representation matrices for geminal transpositions. While 
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this could be done with high-speed computers, it would not 

be as practical as other methods to be discussed. 

Wigner Operators 

There are several group-theoretical approaches to spin 

functions. The Wigner shift operators (Wigner, 1931, 1959) 

(P^(NS3) = [d(NS)/N!]%[p-l]NS p, (35) 

with 3 fixed, will generate from a spin product d(NS) spin 

eigenfunctions spanning the spin-space for N and S. Different 

values of 3 produce different bases for the same representa­

tion. Setting a=3 produces a Wigner projection operator, 

which can be shown to be idempotent. 

In order to make spin functions with these operators, 

it is necessary to know the N i spin representation matrices 

[P]^^, for every ? in S^. These can all be generated from 

the (N-1) matrices representing the elementary transpositions 

(k-l,k), where k runs from 2 to N. 

A spin-coupling procedure for evaluating these matrices 

was given by Yamanouchi (1936, 1937) and discussed by Kotani 

et al. (1955). The method was extended to the Berber spin 

representation by Mattheiss (1959), following a scheme sug­

gested by Corson (1951) . These procedures are recursive, and 

suffer from the disadvantages mentioned earlier. 

It so happens (Pauncz, 1967) that the YK spin represen­

tation is the same as Young's orthogonal representation 
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(Young, 1932; Thrall, 1941), obtained by noi^hysical argu­

ments. Young's analysis leads to useful rules for evaluating 

the representation matrices for transpositions (Rutherford, 

1948; Goddard, 1967a; Coleman, 1968) . This method is quite 

practical. 

It is possible to get along without the representation 

matrices. Setting 3=ct in (35) and summing over a, one obtains 

the new operator 

(p (NS) = [d(NS)/Nl] I x^^(P)P, (36) 
X p 

where is the character of the permutation ? in the 

representation given by the matrices This operator, 

when applied to a spin product, does not in general produce 

one of the spin eigenfunctions (NSM) , but some function 

in the (N,S)-space spanned by them. Thus (36) is the group-

theoretical equivalent of LOwdin's operator. 

The fly in the ointment is that, for ten electrons, 

there are 101 = 3,628,800 terms in the sum of (35) or (36) . 

It would be extremely time-consuming to generate this many 

representation matrices from the nine elementary matrices. 

Even to get the characters required by (36) would be ineffi­

cient compared to Lowdin's method. The operators (35) and 

(36) have been used to make spin functions for small N 

(Smith and Harris, 1967; Harris, 1967), but they are not 

practical for many systems of interest. 
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Young's theory of the symmetric group leads to a more 

viable approach to projection operators through group theory. 

Only some permutations are required in projectors made in this 

way, and the calculations do not become so unwieldy. A dis­

cussion and further extension of this method is presented in 

the next chapter. 

Berber Spin Functions 

^2 
by Diagonalization of S 

The first new method suggested here for the construc­

tion of Berber spin functions is largely numerical in charac­

ter. 

We seek to construct spin eigenfunctions (NSM) having 

the following properties: 

S^e (NSM) =îi^S(S+l)e (NSM) ; (37) 
TTC ira 

S e (NSM) = m 9 (NSM) ; (38) 
z ira ira 

g© (NSM) = ±0 (NSM) for every geminal 
^ Tra TTtt 

transposition g in (39) 

g0 (NSM) =•-0 (NSM) for every geminal 
TTa ira 

transposition g in (40) 

Properties (39) and (40) can be reworded: 0^^(NSM) is to be 

^2 
an eigenfunction of every geminal spin operator S (2y-l,2y), 

and in particular, its eigenvalue under such an operator is 
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to be zero when . 

It is natural to think of such functions as linear com­

binations of products, not of one-electron spin functions a 

and 3/ but of the geminal spin functions introduced in (29); 

= w^(0,0) = [a(2y-l) 3(2y) - 3 (2y-l) a (2u) ]//2, 

T = w (1,1) = a (2iJ-l) a (2ij) , 
^ ^ (41) 

= w^(l,0) = [a(2u-l) e(2u) + 3 (2y-l) a (2y) 3//2, 

iy =w^(l,-l) = 3(2u-l) S{2y) . 

For the moment we consider only the case when N=2n is 

even. The product 

n 

W^(s^,...,s^;mj_,...,m^) = 1 T  w^(s^,m^), (42) 

where M=Zm^, we shall call a geminal spin product. Obviously, 

each geminal spin product is an eigenfunction of the gem-

^2 inal spin operators S (2y-l,2y) and S^(2y-l,2y), for every y. 

The spin eigenfunction 0^^(NSM), which is some linear 

combination 

e^^(NSM) = I I X 

u u 
X (s^f* • ^1 ' * * • ' ̂n ̂ ^ ̂ ) 

where M=Zm^ is fixed, is itself an eigenfunction of the 

^2 operators S (2y-l,2y). Thus (NSM) contains only those gem­

inal spin products having the same geminal pair-spins: 

each linear combination (43) has {Sj^,S2,. • - / S^} fixed. 
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We say that each linear combination has a certain "pair-spin 

combination", or "PSC" . Each geminal pair spin is called a 

"PS". Furthermore, the subscript "ir" on (NSM) means that 

every in (43) has s. =0 for ̂ =1,2,This follows from 

(40) . 

Now, given that the linear combinations (43) , for fixed 

N, S, M, and IT, are subject to the three conditions 

(i) the PSC is fixed; 

(ii) s =0 for y^TT; y 

(iii) 

only one more condition is required to produce the 0^^(NSM): 

the linear combinations must diagonalize the £ -matrix. This, 

of course, forces the linear combinations to be eigenfunc-

tions of S . 

Serber spin functions can be made, then, by the very 

simple algorithm shown in Figure 3. The algorithm is so sim­

ple that only one part of it requires further explanation -

the calculation of the S -matrix over geminal spin products. 

The N-electxon operators S^, S^, and S are related by 

3-S+ = (ViSy) (^iSy) . s2 + s2 + i[S^,Syl 

= 

or s = S_S+ + 5^(5^+1) 
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Determine all PSC's having the properties 

(i) s^=0 for ]i=l ,2 , ,. . ,tï; 

(ii) I s >|M| . 

For each of these, do the following: 

construct every possible gexn-

inal spin product having Ziti^=M; 

^2 
calculate the S -matrix be­

tween these geminal spin prod­

ucts ; 

/\2 diagonalize this S -matrix; 

keep only those eigenvectors 

having the desired eigenvalue 

S. 

Figure 3. Algorithm for construction of Serber spin 

functions with eigenvalues S, M, for use with 

a space product function having ir doubles 
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n 
Writing S+ = 2 s+(p) in terms of the geminal pairs, 

- y=i " 

i  (S +1) + I  s_(u)ê^(y) + I  I  [ê (y)s.  {v)+â (v)ê.(i i)] .  
^ ^ y %<v 

The calculation of the S^-matrix is trivial when the operator 

is written in this form. The action of the second term on the 

geminal spin functions (41) is given by 

a 0 

T 0 

T 2T 

I 2% 

Thus 

I s_(y)s_^{]j)Wj^ = 2[n(T) + n(T) ]W^ , 
y 

where n(T) , for example y is the number of times that w(l,0)=T 

occurs in W.,. 

Since the geminal spin products (42) are orthogonal, 

the -matrix elements between such products (with M fixed) 

are given by 

<Wj^lS^Wj^> = {M(M+1) + 2[n(T)+n(T)]} 6(W^ , W%) 

+ <#%{ 2  I  [s_ ( y )s_j. ( v )+s_ ( v )s^ ( y )]W^> .  
y<v 
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The contribution in {}-brackets is zero unless On 

the other hand, the last term is zero unless and differ 

in two geminal pairs, say those numbered k and X. In that 

case, the last term is [note that all geminal spins s^ are 

the same in any two products and in (43)] 

<w^ (s^,m/)w^ (s^,m^) j [s_(<) s_|_ (X)+s_(X) s^ (k) ]w^(s^,m^)w^ (s^,m^) > 

This integral is zero unless m^+mj|^ = m^+m^. In fact, of 256 

elements in the matrix of such integrals, only eight are non­

zero: see Figure 4. 

The algorithm of Figure 3 has been programmed in Fortran 

for the IBM System 360/65, and the listing is given in Appen­

dix C. The speed of this program is limited by the matrix 

diagonalization procedure. The one listed, EIGEN, is an IBM 

Jacobi scheme improved by R. C. Raffenetti, D. M. Silver, 

and 3. F. Sullivan, of the Theoretical Chemistry Group at 

Iowa State University, Ames, Iowa. The time required by EIGEN 

to produce double-precision eigenvectors of a matrix goes 

up roughly as the cube of the dimension: in this case, as the 

cube of the number of geminal spin products for a given PSC. 

EIGEN will handle a 10*10 case in less than 0.5 second, and 

a 25x25 in less than seven seconds. 

As a practical matter, one is interested in using the 

spin functions to calculate the representation matrices of 

the permutations in the symmetric group. Such matrices are 
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a a  a x  a x  a x  x a  x x  x x  x x  x a  x x  x x  x x  x a  x x  x x  x x  

Figure 4. Matrix of elements 

<W^W^1 [s_(K)s^(X)+s _ (X)(<)]> 

(All elements not given explicitly are zero.) 
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needed for the evaluation of expectation values in terms of 

wave functions containing the spin functions. 

The NI permutations belonging to are products of the 

(N-1) elementary transpositions tj,= (]c-l,k) , where k runs from 

2 to N. In practical applications, one therefore generates 

only the t^-matrices from the spin functions. 

A program has been written which generates all Serber 

spin functions for given N, S, and M, and then evaluates all 

of the t^-matrices from them. Sample running times in single 

precision are: 

N S M spin functions elem. matrices ^^sec)^^ 

4 1 1 3 3 0.4 

4 0 0 2 3 0.3 

6 3 3 1 5 0.2 

6 2 2 5 5 3.0 

6 2 1 5 5 14.0 

6 2 0 5 5 23.7 

6 1 1 9 5 31.1 

6 2 0 9 5 51.7 

These running times reflect the fact that the complexity of 

spin functions depends on |M|. 

An application of these techniques is the program to 

generate simultaneous eigenfunctions of spin and orbital 

angular momentum, listed in Appendix E. Subprograms SSQEIG 

and SEIGEN generate Serber spin functions, and FPMAT is used 

to evaluate permutation matrices. The operation of this 
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program is explained in the last chapter. 

The preceding discussion leads to the following conclu­

sions. The most convenient computer technique for obtaining 

Serber spin representation matrices is to generate spin func­

tions first, and obtain the matrices from them. This requires 

many arithmetical operations, but most involve only integer 

arithmetic, and are quickly done. Attempts to obtain matrices 

directly from genealogical schemes usually require a very 

large amount of storage when more than a few electrons are 

involved. The exception is that YK matrices may be obtained 

conveniently from Young tableaux. This approach is useful 

when spin functions are not required. 
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CONSTRUCTION OF SPIN EIGENFUNCTIONS 

BY GROUP-ALGEBRAIC TECHNIQUES 

We have described how the group-theoretical Wigner op­

erators can be used to generate spin functions. It seems 

reasonable to expect that group theory might lead to simpler 

expressions for such operators, ones which do not involve 

sums over every group element. We present in this chapter 

a new method to accomplish this, a method by which YK and 

Serber spin functions can be generated directly from Young 

tableaux without the need to evaluate representation matrices. 

As a bonus, this approach also gives directly the dual space 

functions. 

The operators we shall describe form matric bases in the 

symmetric group algebra. The theory behind them is abstract 

and relatively unfamiliar to chemists. For this reason, we 

shall begin by outlining the application of group algebra 

theory to the symmetric group. The reader seeking a more 

complete treatment is referred elsewhere (Weyl, 19,31; van 

der Waerden, 1950; Johnson, 1960; Boerner, 1963; Lowdin, 

1967; Poshusta, 1969; Matsen, 1970; Salmon, 1971). 

Despite the abstractness of the theory, the operators 

obtained turn out to be "conceptualizable" and easy to apply. 
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The Group Algebra for S^; 

the Regular Representation 

While the method of the last section dealt with linear 

combinations of spin product functions, we now construct 

linear combinations of permutations which, when operating 

on a single product function, produce basis functions for 

irreducible representations of S^. 

Two such operators are familiar. The antisymmetrizer, 

À = (N!)"^ y e(P)P, 
? 

has already been introduced, and there is, similarly, a 

symmetrizer: 

3  =  ( N i ) " ^  y  p .  
p 

These operators are ideiapotent and are projection operators 

for the antisymmetric and symmetric representations, respec­

tively . 

For N>2, however, there are other irreducible represen­

tations. This chapter is concerned with the construction of 

projectors for all of the irreducible representations. In 

group-theoretical language, ̂  seek a way to completely re­

duce the regular representation of Let us start with the 

functional approach of the last chapter, and show how it 

leads to a powerful abstract method for this reduction. 

Consider an N-electron function f, such that the Ni 
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functions 

£(l./2r.../Nv/ ... / f(N/3/X/«..}/ ... 

are all distinct. It is convenient to label these functions 

with the permutations that generate them from f(1,2,...,N); 

let fJ(1,2,...,N) = f(l,2,...,N) and, if 

p _ f l 2 3  . . . N \  
^p7?2p3 ' 

let fp(1,2,...,N) = f(p^,p2,...,p^) = Pf(1,2,...,N), etc. 

The ser (fp) is a basis for an important representation 

of S^: for every P and f^, there is in the set an f^ such 

that 

In other words, 

P•f^ = f^, where R = PQ. 
u ^ 

g ^SR* 

It is easy to show that the matrices r(P) multiply like 

the permutations. They constitute the regular representation 

of S^, which is shown in elementary texts to be reducible 

and to contain every distinct (i.e., nonequivalent) irrep 

of Sjj. It should be noted that the permutations play a dual 

role in the regular representation: they are both the trans­

formations and the labels for the basis functions. 

The NI-dimensional linear space spanned by the fp 
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is said to be the carrier space for the regular representa­

tion. It consists of every linear combination 

X(1,2,...,N) = I x(P)f (1,2,...,N) 

of the basis functions f^. 

Since the regular representation is reducible, its car­

rier space F(S^) is decomposable into the direct sum of sub-

spaces invariant and irreducible with respect to the opera­

tions of the group. Since the regular representation contains 

every nonequivalent irrep, F (S^.) contains a carrier space for 

every distinct irrep. 

The meaning of these terms can be clarified through an 

example. Suppose that f (1,2,3) = a(l)b(2)c(3) = abc. Then 

PfSg) consists of every linear combination of the form 

X(l,2,3) = x^abc + X2bac + x^cba + x^acb T x^cab + Xgbca. 

It turns out that this linear space can be decomposed as the 

direct sum of the following four irreducible subspaces: 

subspace 1, spanned by 8.^= abc-f-bac+cba-i-acb+cab+bca; 

2abc+2bac-cba-bca-cab-acb, 
subspace 2, spanned by I 

^®22~ acb+bca-cab-cba; 

r6_.= acb-bca+cab-cba, 
subspace 3, spanned by / 

1022= 2abc-2bac+cba-bca-cab+acb; 

subspace 4, spanned by 8^^= abc-bac-cba-acb+cab+bca. 
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By "direct sum" is meant the following: 

(i) Every function in FfSg) can be written as a 

sum of functions in the subspaces. 

(ii) The subspaces share no functions other than 

the null - they are independent. Here, in fact, 

their basis functions are all orthogonal. 

The subspaces are said to be "invariant" under because 

the result of operating with a permutation on a vector from 

one of the subspaces is again a vector in that subspace. For 

example, 

(1,2)©2t = ^21' (l'2)e22 = "®22' 

(2,3)©2I ~ 2 ̂~®2l"^^®22^ ' (2,3)022 ~ 5^®2l"^®22^' 

The invariant subspaces are "minimal" or "irreducible" be­

cause they cannot be decomposed into smaller invariant sub-

spaces. Here, in fact, two of the subspaces are one-dimension-

al. 

The carrier space F(S^.) for the regular representation 

of Sj- is decomposed by finding projection operators for the 

various minimal invariant subspaces. To this end, we recast 

the linear function space F(S^) in terms of operators: 

an element 
X(1,2,...,N) = I x(?)f (1,2,...,N) 

PeSa 

is written in the form 



www.manaraa.com

73 

X(1,2,...,N) = [ I x(P)P] f (1,2,...,N) . 

From this point of view, each element X(1,2,...,N) in FfS^) 

corresponds to an operator like [Zx(P)P]. The "primitive 
P 

function" f(l,2,...,N) is the same in every case, and is thus 

superfluous- The properties of F(S^) can be discussed without 

mentioning the primitive function. 

For this reason, the space F(S^) of functions can be 

replaced by the equivalent linear space A(S^), consisting 

of all operators of the form 

X = I x(P)P. 

The space A(S^) is called the group algebra of S^. It is to 

be considered not only as a set of operators, but also as a 

linear vector space spanned by the group elements. 

Like F(S^), A(S^) is a carrier space for the regular 

representation of . Finding operator bases for minimal 

invariant subspaces of A(S^) corresponds to finding basis 

functions for minimal invariant subspaces of F(S^), and in 

this sense is equivalent to finding basis functions for 

irreps of . 

We shall see, for example, that a basis for a certain 

minimal invariant subspace of A(S^) consists of the operators 
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^>1 = '^12^34* ' 

°2 = ̂ 12^34-(3,4)-(P , (45) 

°3 ~-^i2'^34 ' ^ ' 

where S- , and À. , are the symmetrizer and antisym-
% / * # # /  J C  1  /  *  •  •  /  i C  

metrizer on the numbers respectively, and 

 ̂= "̂ 14̂ 123̂ 14̂ 34*̂ 12 * 

These operators, applied to the spin primitive 

a$aB = a(1)3(2)a(3)3(4), generate the basis functions 

0^ = (a3+3a)(a3-3a), 

©2 = aa33 - 33aa, (46) 

©2 = {a3-3a)(a3+3a). 

Comparison with (S) shows that these are Serber spin func­

tions for N=4, S=l, M=0. Either the operators of (45) or the 

functions of (46) can be thought of as a basis for the corre­

sponding irrep of . 

Just as the group algebra is an abstraction from the 

function space F(S^), the regular representation has a more 

abstract meaning in terms of A(S^). Equation (44) defines a 

matrix representative for each group element when the basis 

in A(Sjj) is chosen to be those same group elements. Again, 

the permutations in play the dual role of transformations 
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and basis elements. This implies a dual role for the group 

algebra. 

Since the regular representation defines a matrix 

r (P) ̂  P 

representing each permutation, it automatically defines a 

matrix 

r (X) = % x(p)r (p) 
p 

representing each X=Zx(P)P in AfS^). This is the regular 

representation of the group algebra, a generalization of the 

regular representation of the group. Hereafter, we shall 

understand the word "representation" to mean a representation 

of A(S^) . 

In the regular representation, then, the group algebra 

is to be considered as the set of operators being represented 

and also as the carrier space for the representation. The 

basis vectors in the carrier space are taken to be the permu­

tations P. The representation matrices T(X) for each X in 

A(Sj^) are related to the basis vectors P by the equations. 

XP = I r , (X)P'. 
P'ESn 

In these equations, the basis vectors of the carrier space 

are being transformed according to left-multiplications by 

elements of A(S^). 
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Minimal Left Ideals, 

Primitive Idempotents, 

and Matric Bases 

Carrier spaces of representations into which the regu­

lar representation reduces are subspaces of that are 

invariant under left-multiplications by group algebra ele­

ments. Given an element U in A(S^), it is easy to see that 

the set of elements 

L = {XU|XEA(S^) } 

is such a subspace. The set L is said to be the left ideal 

generated by U, and U is called its generator. Every sub-

space of A(S^) that is invariant under all left-multiplica­

tions is a left ideal. Left ideals are thus carrier spaces 

for the representations into which the regular representa­

tion reduces. 

Corresponding to the reduction of the regular represen­

tation, its carrier space Adecomposes as the direct sum 

of certain left ideals: we write 

A(S^) = L^ e Lg e ... © Lj^ . 

It may be that a left ideal L^ contains left ideals of 

smaller dimension, in which case L^ itself decomposes. By 

carrying this process as far as it will go, A(S^) can be 

written as the direct sum of certain minimal left ideals. 
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each of which is nondecomposable, or irreducible. The minimal 

left ideals into which A(S^) decomposes are carrier spaces 

for the irreducible representations contained in the regular 

representation. As is well-known, the irrep "a" occurs d^ 

times in the regular representation if it has dimension d"^. 

Similarly, d°'' equivalent minimal left ideals {1,9^1=1,2,...,d^} 

for irrep a occur in the decomposition of A(S^). We write 

A(Sjj) = @ ̂2 @ ... ® , 
a d 

in which the sums are direct. 

We wish to obtain operator bases for these minimal left 

ideals, for such operators can be used to generate basis func­

tions for the irreps. 

It can be shown that every left ideal contains at least 

one idempotent generator, e, called a generating unit. A gen­

erating unit for a minimal left ideal is called a primitive 

idempotent. It turns out that an element e is a primitive 

idempotent if and only if 

eXe = À(X)e, (47) 

where X is any element of A(S^) and X(X) is a number that de­

pends on X. Obviously, if e is to be idempotent, it must be 

that X(I)=1. Property (47) is used to identify generating 

units for irreducible carrier spaces. 

Idempotents that generate different minimal left ideals 

occurring in the decomposition of A(S^) annihilate each other. 
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If and Lj are generated by idempotents e? and e^, respec­

tively, it can be shown that 

e?e^ = e^e" = .c^ . (48) 
13 31 ID ^ 

These idempotents are the diagonal elements {e?=e^^} of 

a set 
{e^.jall a; i,j=l,2,—,d^} 

of operators in A(S^) having the multiplicative property 

•  < « >  

This property guarantees that the = Ni elements {e9.} 
a ^ 

are linearly independent. For if 

III c(a;i,j)e^^ = 0 , 

then from (49), 

a 

az] 

Gkk'III cia:i,:)eGj.e^2 = 0 = c{6;k,n)e^ , 
ai" 

or c(p;k,n) = 0 

for any 0, k, and n. 

Like the permutations, then, the e?j form a basis for 

the whole group algebra, and there is a transformation between 

the two basis sets : 

? = TTY rp]C . 
.] 1] 

-=• = I I I  • (501 
ai] 

Because of this and the fact that the e^^ multiply like the 
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"elementary matrices" e^^ = (5^^), they are given the name 

matric basis. 

nortan-h to note that 6... _ _ 
1] 1] 33 13 3 

It is important to note that e9. = e?.e^. = e?\e^. This 

means that the subset 

Bj = {e?j|i=l,2,...,d^} 

of the matric basis belongs to the minimal left ideal gener­

ated by e^. Since the matric basis elements are linearly in­

dependent, Bj constitutes a basis for the jth minimal left 

ideal for irrep a occurring in the decomposition of the group 

algebra. From 

= III = I ' (51: 

it follows that the coefficients [P]?^ in (50) are elements 

of an irreducible representation matrix for P. It can be seen 

from (51) that the sets 3*^ and B^ , where span two car-
3 ^ 

rier spaces for the same irrep. 

Multiplying (50) by [P , summing over P, and apply­

ing the Orthogonality Theorem for irrep matrices, one obtains 

the expressions 

4i. ' (a'/N!) . (52) 

These relations are often used to find the matric basis ele­

ments . 

Now it is possible to see what property of the matric 

basis corresponds to orthogonality in the irrep matrices. We 
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define for each element X = % x(P)P in &(&_) 
P 

an adjoint ^ x*(P)P ^ = J x*(P ^)P , 
? P 

where x*(P) is the complex conjugate of the number x(P). This 

definition is reasonable in view of its application to inte­

grals over functions : if (p and tp are well-behaved functions, 

= I x*(P)<P*|^> = I X*(P)<0|P"^^> = <*|xT*>. 
P P 

The adjoint of e^^ is, therefore. 

e?: = (d*/N!) I [p-l]**p-" = (d*/N.) I [P3*;P 
p J -*• p J 

Comparing this with 

e^. = (d^'/N!) 7 ; 
J p J 

we see that the property 

e^ = e^ (53) 

implies that iP]^\ = [P . 
J-*- 3-J 

Thus a raatric basis with property (53) spans carrier spaces 

for unitary irreps. If the coefficients in the matric basis 

elements are real, then the irrep matrices are orthogonal, 

and a a 
e". = (d^NI) 

P 
ej. = (dVNI) I [P]9\P . (54) 

 ̂J p J 

n order to generate basis functions for orthogonal irre-
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ducibie representations of the symmetric group, therefore, we 

require a matric basis of operators with the multiplicative 

property (49) and the adjoint property (53). This matrie basis 

is to be associated with the irreps of by building it 

around primitive idempotents for the minimal left ideals occur­

ring in the decomposition of the group algebra. 

The primitive idempotents e?\=e? are to be constructed to 

have the properties 

e?e® = .e". = e" . 
1 j 1] 1" 1 1 

It will follow that (see page 137) 

IH '  iHi  = ̂  • 

Thus the idempotent diagonal elements of the matric basis will 

be projection operators for irreducible carrier spaces. 

Young Idempotents, Young Operators 

Minimal left ideals of A(S^) can be generated using a 

method developed by Alfred Young (1901, 1902, 1928, 1930, 

1932) . An account of rhis metihod, with a complete bibliog­

raphy, has been given by Rutherford (1948). Weyl (1931) and 

Boerner (1963) have described the connection between Young's 

work, and group algebra theory. 

Since there are as many classes of as there are par­

titions of N, The partitions of N provide a way of labelling 

the irreps of S^.: for N=4, the labels are 
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partition 

{4,0} 

pictorial label 

_U_ 

{3,1} 

{2,2} = {2r} 

ffl 

{2,1,1} = {2,1^} 

{1,1,1,1} = {1^} 

m 

These pictorial labels for irreps are called Young diagrams 

or patterns. If the row lengths of a Young diagram are 

p^, p^, P^, (where p^^p^^ —^P^)/ the diagram is named 

{p}. 

The diagrams are used to make Young tableaux. A tableau 

is a particular way of arranging the numbers 1,2,...,N in the 

boxes of the diagram. For example, the diagram ^ for N=3 

gives rise to the following tableaux: 

(We shall often omit the boxes for convenience.) 
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Each tableau is used to build operators. Given a tableau 

T/ let (SL = {r} be the set of all permutations which inter­

change only numbers on the same row. This set is a group -

the row group. We similarly define a column group, C = {c}. 

1 2 For the tableau , these are 
3 4 

5 

% = {I, (1,2), (3,4), (1,2) (3,4)} , 

C = {I, (1,3), (1,5), (3,5), (1,3,5), (1,5,3), 

(2,4), (1,3) (2,4), (1,5) (2,4), (3,5) (2,4), 

(1,3,5) (2,4), (1,5,3) (2,4)} . 

Note that Gl is the direct product of the groups for individ­

ual rows, and that C is the direct product of individual 

column groups. 

The row operator is defined to be a symmetrizer on the 

row group: 

R = % r. 
rsQL 

This is the product of symmetrizers for the individual rows. 

The column operator is defined to be an antisymmetrizer 

on the column group; 

C = J e (c) c, 
ceC 

where e(c) is +1 when c is even and -1 if c is odd. This is 

the product of individual column antisymmetrizers. 

The tableau operator is the column operator followed 
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by the row operator: 

E(T) = RC = I r ^ e(c)c. (55) 
r c 

(Some authors define E(T)=CR.) This operator is given the 

special symbol E because ^ essentially idempotent (idem-

potent within a numerical factor) and generates a minimal 

left ideal. It is called the Young idempotent for tableau 

T, and it satisfies (47) . 

Young tableaux and idempotents have the following im­

portant property: if T and T' are tableaux belonging to the 

same diagram, then E(T) and E(T') generate minimal invariant 

subspaces for equivalent representations ; if T and T' belong 

to different diagrams, E(T) and E(T') generate minimal left 

ideals for nonequivalent representations. Since each diagram 

labels a distinct irreducible representation, the Young 

idempotents can be used to generate irreducible subspaces 

for every distinct irrep. 

One further definition is required in order to clarify 

the correspondence between diagrams and irreps. A standard 

tableau is defined to be a tableau in which the numbers along 

each row increase to the right and numbers on each column 

increase downward. The diagrams, standard tableaux, and Young 

idempotents for N=4 are shown in Figure 5. 

It can be shown that the number of standard tableaux 

for the diagram D={p}={p^,p2/..•/P^} is 
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Diagram, D Standard tableaux, T? standard^ 

tableaux, d 
D 

Young idempotents, E. 

n 12 3 4 
'1234 

1 2 3  1 2 4  1 3 4  

4 3 2  ̂ '̂ 123-̂ 14 '̂ 124'̂ 13 '̂ 134'̂ 12 

œ 12 13 

3 4 2 4 
 ̂ "̂ 12*̂ 34̂ 13̂ 24 1̂3̂ 24'̂ 12'̂ : 34 

;d 1 2 

3 

4 

1 3 

2 

4 

1 4 

2 

3 

*^12^134 "^1^^124 "^14^123 

1 

2 

3 

4 

À 
1234 

Figure 5. Example of N=4 
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( TT (pj-Pi+j-i) ] 
= (N!) j I (56) 

^ TT [ (pj+r-i) !] / 
i=l ^ 

that these nuiobers satisfy the equation 

I idP)^ = NI, 
D 

aiid hence that is the dimension of the irrep of corre­

sponding to the diagram D. 

The situation is as follows. Each Young diagram D labels 

a distinct irreducible representation the dimension of 

which is given by d^, the number of standard tableaux. This 

number is also the number of equivalent carrier spaces for 

F^ occurring in the decomposition of the group algebra. Thus 

there is a one-to-one relation between the standard tableaux 

{t?1 i=l,2,...,d^} for diagram D and the equivalent carrier 

spaces for F^ occurring in the decomposition of A(S^). Since 

the Young idempotent for each standard tableau generates 

an irreducible subspace of AfS^), there is a one-to-one 

relation between these minimal left ideals and the irreduci­

ble carrier spaces occurring in the decomposition of the 

group algebra. Just what this relation is will become clearer 

as we proceed. 

Suppose that the standard tableaux for diagram D are 

related by permutations p9j : 
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i = Pif- ' 

where = I and (p^j) ^ = ^ji* can be shown that the d^ 

elements 

D „D D 
Pi A ' P2A ' 

where is the Young idempotent for T^, are all linearly 

independent. Since these elements belong to the left ideal 

generated by they span a carrier space for the irreduci­

ble representation associated with the diagram D. These 

operators, called Young operators, thus form a basis for 

an irreducible carrier space, and can be used to make basis 

functions. We shall give an example shortly. 

Spin Diagrams 

Diagrams with one or two rows correspond to spin repre­

sentations of . Other diagrams are associated with Young 

idempotents containing column antisymmetrizers for more than 

two numbers. Such an operator will annihilate any spin primi­

tive function to which it is applied, since spin functions 

contain only two one-electron functions - a and 8. For exam­

ple, 

=  0 .  

We can now see which diagram labels a particular spin 



www.manaraa.com

88 

representation. For a diagram containing two rows at most, 

(56) becomes 
^ N1(p^-P2+1) 

(p^+1)ipg! 

This gives the dimension of the spin representation corre­

sponding to diagram D. Using the example of N=4, we have the 

spin representations 

(dimension 1), 

(dimension 3), 

(dimension 2). 

Comparison with the branching diagrams. Figures 1 and 2, 

reveals the following correspondence; 

S=2, 

S—1 / 

—1~ . S—0 . 

Indeed, the general relation between the diagram {pj^,p2} 

and the spin representation labelled by N and S is given by 

(Pl-p2)/2 = S, P2+P2 = N, 
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or = (N/2) + S, Pg = (N/2) - S. 

Let us use the techniques described on the last several 

pages to derive spin functions for N=4, 8=1, M=0. The stand­

ard tableaux are 

„D _ 123 „D _ 124 D _ 134 
^1 - 4 ' ^2 ~ 3 ' ^3 " 2 ' 

so that p^^ = I, P2j_ = (3,4), = (2,3) (3,4) 

The Young operators for are 

E°1 = E°, E23_ = (3,4)E°, E^^ = (2,3) (3,4)E°, 

wiiere E° = . 

These operators, applied to the spin product 0=aga3 for M=0, 

give three linearly independent spin functions : 

9^ = E^0 = ̂ ^23*^14'^= 2 {a6aB+aaB3+3aa3 

-B3aa-a3Ba-3a$a) 

= 2 raaBB-SBaa+(aB+Ba) (a3-Bcx) 3 ; 

©2 = (3,4)8^ = 2(aB3a+aa33+BaBa-B3aa-a3a3-3aa3) 

= 2[aaB3-B3aa-(aB+Ba)(aB-3a) 1 ; 

0^ = (2,3) ©2 = 2 (aB3a+a3a3+BBaa-Ba3a-aaB3-3cta3) 

= 2 [3Baa-aa3B+(aB-Ba) (aB+3ct) 1 . 

Direct application of shows that these functions are spin 

eigenfunctions, with eigenvalue S=l. 
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Deficiencies of Young Operators 

From a practical point of view, spin functions gener­

ated by Young operators have two shortcomings: they are not 

orthogonal, and they correspond to neither the YK nor the 

Serber spin-coupling scheme. Consequently, these functions 

do not have the properties demanded by the SAAP formalism. 

One reason for this is that Young operators do not com­

pose an orthogonal matric basis. It can be shown that they 

multiply, not according to (49), but according to the equa­

tions 

where 6^^ is not always zero when j^m. 

In addition, there is nothing about the construction 

of Young operators that would associate them with any par­

ticular spin-coupling scheme. 

Neither do these operators possess the adjoint property 

of (53). Since row and column operators are self-adjoint 

(symmetrizers and antisymmetrizers are Hermitian), 

= C°R°p5i 

This last deficiency can be remedied by defining new 

operators p^jC^RjC^ or p9j^j^j^j • Such operators are easily 

seen to satisfy (53). Their properties have been studied by 
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Gallup (1568, 1969), who has used them to generate projected 

Bartree-product wave functions. 

According to (49), the diagonal elements of a matric 

basis multiply according to 

_D D' _ .DD', D 
11 ]] 1] 11 

That is, these elements are idempotent and they annihilate 

each other from the left and right. It can be shown that the 

generating units for the minimal left ideals into which the 

group algebra decomposes also have this property, as well 

as the property (47) characteristic of primitive idempotents. 

Young idempotents are primitive. Two Young idempotents 

from different diagrams annihilate each other from the left 

and right. However, two Young idempotents from the same dia­

gram may not do this. In other words, Young idempotents 

"almost" multiply like the diagonal elements of a matric 

basis (Mcintosh, 1960). 

Examining the situation more closely, we may draw the 

following conclusion. There occur in the decomposition of 

A(Sj^) d^ equivalent irreducible carrier spaces for the irrep 

labelled by diagram D. These carrier spaces are generated by 

the matric basis idempotents e^, e^/ ..., e^^. The Young 

idempotents E^, ..., E^^ generate carrier spaces for this 
d 

representation also. Thus there must be equivalence trans­

formations relating the Young idempotents and the matric 

basis idempotents. 



www.manaraa.com

92 

In constructing from Young idempotents a matric basis 

suited to the SAAP formalism, we must, therefore, build 

operators that 

(i) are related to a spin-coupling scheme; 

(ii) multiply like a matric basis; 

(iii) have the adjoint property (53). 

As we shall see, this can be accomplished by multiplying 

Young idempotents from the left and right by certain opera­

tors . 

Tableau Chains 

It is well-known that standard tableaux can be derived 

from a genealogical scheme similar to that involved in spin-

coupling (Jahn and van Wieringen, 1951; Pauncz, 1967; Cole­

man, 1968; McWeeny and Sutcliffe, 1969; Klein et al., 1970). 

Since Young spin diagrams {p^ypg} label spin representations 

of through the relations p^=(N/2)+S, P2=(N/2)-S, the YK 

branching diagram can be given in the form shown in Figure 

6. In other words, the Young diagrams can be considered the 

result of a "box-coupling" procedure; one starts with Q 

and adds boxes one by one, subject to the condition that 

Pl^P2-

Figure 6 is a kind of shorthand for the genealogical 

construction of standard tableaux. If we start with the 

tableau [T] and add, one by one, the numbers 2,3,...,N in 
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3/2 

1/2 

•N 

Figure 6. YK branching diagram for Young diagrams 

such a way that the resulting tableaux are standard, we ob­

tain Figure 7. 

Each route in this figure results in a unique standard 

tableau. Conversely, each standard tableau uniquely defines 

its predecessors along the route. This follows from the fact 

that removal of the highest number from a standard tableau 

for N numbers produces a standard tableau for (N-1) numbers. 

124 
Thus, for example, one can work backward from ^ izi the 

following way: 
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12 3 4 

mu 
|2|4l 

N 

Figure 7. YK branching diagram for standard Young tableaux 
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(N=2,S=1) 
(N=4,S=1) 

(N=1,S=^) 
(N=3,S=2^ 

The significance of this is that each standard tableau 

can be uniquely associated with a YK branching route, and 

therefore can be uniquely associated with a YK spin function. 

To use the example of page 52, N=4, S=1 (or D= {J * * ), we have 

the correspondence 

Standard tableau Branching route 

12 3 

4 

12 4 

3 

13 4 

2 

A 
a/ 

It will be observed that each number on the upper row of a 

standard tableau corresponds to an upward movement in the 

associated branching route, and each number on the lower row 

corresponds to a downward movement. 

Strictly speaking, it is not the tableau itself that 

corresponds to a YK branching route, but the unique "chain" 
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of tableau predecessors from which it derives. For example, 

the branching route is a shorthand for the tableau 

chain 

pn rïTsi . |1|3|4 

l2j [2] LU 

Such a chain involves the addition of one number at a time, 

and is called a 1-chain. 

D Jc In general, we denote by the standard tableau ob-

tained from by removing its k highest numbers y viz. 

N, N-1, N-k+1. Thus the 1-chain defined by is written 

^DfN-l —^ ̂D,N-2 —^ ^ yD,j. —^ _ 
r r r r 

Each standard tableau is also associated with a unique 

2-chain, if N is even. Removal of two numbers from a standard 

tableau results in a smaller tableau which is also standard. 

Thus one can work backward from a given standard tableau and 

define its predecessors in a Serber-type genealogical scheme. 

For example. 

12 li2|4| il!2|4|6i 

Lij Ills. 

In general. 

D,N-4_ 
r r r r 

In other words, standard tableaux can be considered construct­

ed according to the Serber branching diagram of Figure 8. 
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11213 4  

13 4 

12 14 I 

N 

Figure 8. Serber branching diagram 

for standard Young tableaux 
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We have indicated in each case the pair of numbers being 

added, and their positions relative to the original tableau. 

At each stage in such a branching diagram, a geminal 

pair of numbers 2\i-l,2y. is added to a tableau containing 

y-1 geminal pairs. It will be observed that the addition 

of • • |2y-l| 2|i always corresponds to s^=l, and the addi­

tion of two numbers on the same column always has the effect 

of adding s^=0. There is an ambiguity, however, when 2]i-l 

and 2y are on neither the same row nor the same column. One 

case must correspond to the addition of s^=l and the other 

to s^=0. We are free to make a choice, so long as we are 

consistent. In the following pages, we shall associate 

2u 

2u-l 
with s =1 

2u-l 
and with = 0. 

Now it is clear that the concept of tableau chains pro­

vides the link between Young's theory of the symmetric group 

and the genealogical construction of spin functions. However, 

we have already pointed out that Young operators do not gen­

erate YK or Serber spin functions. Clearly, this is because 

they do not, in themselves, carry information specific to 

1-chains or 2-chains. 

We begin to remedy this deficiency by defining chains 
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of Young idempotents. Suppose that and E^'^ are the Young 

idempotents for the tableaux and respectively. Then 

the m-chain of standard tableaux 

1,0/N-m ^D,N-2m ^D,m ^ 
"r r r r 

is associated with the m-chain 

gD,N-m gD,N-2m 2°'^ — E° 

of Young idempotents. (We assume that N is a multiple of m.) 

D k Carrying this one step further, we define L^' to be 

the minimal left ideal generated by the Young idempotent 

E^'^. Thus each standard tableau T^ defines a unique m-chain 

D,N-m_^ D,N-2m ___ jP jP 
r r r r 

of minimal left ideals. 

Chains of Young Idempotents 

and Genealogical Spin Functions: 

an Heuristic Argument 

It was mentioned previously that the YK spin functions 

for fixed N and S form a basis for that special orthogonal 

irrep of in which ^N-2' —' ̂1 also represented 

by orthogonal, irreducible matrices. The representation is 

said to be adapted to the sequence of groups 
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We shall say that a representation with this property is 

YK-adapted. 

In a similar way, the Serber functions (for even N) are 

adapted to the sequence 

^N-2' ̂ N-4' ^2* 

In addition, every geminal two-electron subgroup of is 

represented irreducibly. A representation with these two 

properties is said to be Serber-adapted. 

The adaptation of representations to sequences of 

nested symmetric groups is the group-theoretical signifi­

cance of a genealogical spin-coupling scheme. 

Now suppose that is a subspace of the group algebra, 

A(Sjjj) , with the following properties: 

(i) Ly is invariant under left-multiplications by 

elements of and transforms according to 

the minimal left ideal L^; 

(ii) the elements of transform among themselves 

under left-multiplications by elements of 

D k like elements of the minimal left ideal L^' , 

for k=l,2,...,N-1. 

Property (i) means that is a carrier space for an irre­

ducible representation of S^. From property (ii), we see that 

Ly is also a carrier space for irreducible representations of 
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SQ_^, SQ._2' Ly is a carrier space for a YK-

adapted representation of S^. 

In a similar way, a subspace Lg of A(S^) is a carrier 

space for a Serber-adapted representation of if 

(i) Lg is invariant under left-multiplications by 

elements of and transforms like L^; 

(ii) the elements of Lg transform among themselves 

under left-multiplications by elements of S^_j^ 

like elements of for k=2,4,...,N-2; 

(iii) the elements of Lg are either symmetric or 

antisymmetric with respect to left-multiplica­

tions by geminal transpositions. 

Before defining orthogonal matric bases for genealogi­

cal representations, it is instructive to see what predic­

tions can be made about the structure of such, operators by 

extending the present argument. We shall see that idempotent 

generators for YK- and Serber-adapted carrier spaces can be 

deduced rather easily. 

The minimal left ideal associated with the standard 

tableau is defined to be L^={XE^}, where X sweeps the 

whole group algebra. It can be shown (Rutherford/ 1948, 

p. 20) that Young idempotents have the property 

E°XE° = e°-i[XE°] E° , 
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where = (Nl/d^) > 0 does not depend on r, and ilXE^] is 

the coefficient of the identity in XE^, when it is expanded 

in terms of the group elements. It follows that 

(XE°)(XE°) = 0°-i[XE°] (XE°), 

so that (XE^) is essentially idempotent if it contains the 

identity. In other words, new idempotent generators of iP 

can be made by left-multiplying E^. 

Consider, for example, the element 

E^(D,r) = ... 

This operator belongs to L^. To the left, it has 

E^'^ which generates 

(ED'K-lE»'K-2), belonging to 

(E»'K-lE»'*-2ED,N-3), belonging to 

etc. 

Thus Ey(D,r) behaves under left-multiplications by elements 

of (where k=l,2,...,N-1) like an element of I?'^. The 

Young idempotent E^ has been "YK-adapted" by multiplying it 

from the left by the 1-chain 
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of Young idempotents from which it derives. 

Similarly, we may expect a Serber-adapted idempotent 

to take the form 

E-(D,r) = ... S^'V'W, 

D 2k where S^' either symmetrizes or antisymmetrizes the geminal 

D 2k 
pair (N-2k-l, N-2k). Since the operators to the left of S^' 

do not contain the electron labels on which it operates, the 

pair-symmetry operators can all be brought out to the left: 

Eg(D,r) = (S°'^"^S°'^"^--•S°'^S°) • 

Thus, when Eg(D,r) is applied to a primitive function, it 

will generate a function which is either symmetric or anti­

symmetric in each geminal pair. 

Assuming that Ey(D,r) and Eg(D,r), when expanded in 

terms of the group elements, contain the identity, they are 

essentially idempotent. However, they are not Hermitian, 

so they cannot be the idempotent diagonal elements of the 

matrie bases we seek. 

It is easy to see that the following operators are Her­

mitian; 

Ey(D,r)Ef(D,r) = • •E°'^E°E°"^E°'^'^-• ; 

E (D,r)E|(D,r) = G°ED'B-2...ED,22D^Dt2D,2t...2D,N-2tgD . 
w  o  x X X X  X  X  
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in which G° = = 0°"^ . 

It can be shown that these operators are, in fact, Her-

mitian idempotents generating YK- and Serber-adapted carrier 

spaces for irreducible representations of S^. It can also 

be shown, however, that they do not multiply like the diago­

nal elements of a matric basis. It may be that 

[Ey(D,r)Ej(D,r) ] [Ey(D,s)Ej(D,s)] 0, 

for example. Thus these operators cannot be used to generate 

orthogonal basis functions. 

We present in the next section matric bases for YK- and 

Serber-adapted orthogonal representations. It will be seen 

that these matric bases are symmetry-adapted in a way simi­

lar to EyEy and EgEg. Their definitions differ only to the 

degree necessary in order to obtain the correct multiplica­

tion properties. 

Definitions of 

Orthogonal Matric Bases 

Glossary of notation 

Let T^ be a standard tableau for a diagram D with N 

boxes, and let and be its row and column groups. Let 

and cP be the row and column operators for T^, and let 

be its Young idempotent. Then E^ has the property 
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E°XE° = ©° i[XE°] E° , 

where 0^>O depends only on D, X is any element of the group 

algebra, and i[XE^] is the coefficient of the identity, I, 

in the expansion of XE^ in terms of group elements. In par­

ticular, i[E^]=l (Rutherford, 1948, p.14), so that 

E^E° = ©°E° . 

It can be shown (Rutherford, 1948, p.65) that = (N!/d^), 

where is the dimension of the representation labelled by 

diagram D. 

The row and column operators are self-adjoint, so that 

= (R°C°) + = = C°R° . 

Letting o^ be the order of the row group for any tableau be­

longing to diagram D, 

SO that 

We define p^^ to be the permutation that rearranges the 

numbers in to form T^: 

^ = PzA • 

Thus p^ is such that p^ =I and p^_ = (p^_) Furthermore, 
xS XJ. SJT JTS 



www.manaraa.com

106 

the tableau operators have the properties 

< = -
and E° = . 

We denote by the standard tableau obtained from 

by removing the m highest numbers, i.e., N, N-1, ..., N-m+1. 

Then if m is a factor of N, defines the m-chain of standard 

tableaux _ ... _ jD-m _ 

There corresponds an m-chain 

gD.N-m_^ ^ E° 

of Young idempotents. 

A matrie basis for orthogonal YK-adapted representations 

The standard tableau T^ defines the 1-chain 

^D,N-1—^ ̂ D,N-2 —^ T^ 

of standard tableaux, where = [T] for every D and r. 

We define for this 1-chain a chain of idempotent opera­

tors, in the following manner: 

eE'K-l = 1 , 

^D,K-2 ̂  j2D,N-2^D,N-1j T(j,D,N-2^D,N-1j^D,N-2 
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eg = (E°e°'^)'^(E°e°'^)/k° , (57) 

where kg is the number 

®°"Pr ' 

in which pg = ilC^E^eg'^] . 

It should be noted that these operators are Hermitian. 

The idempotents eg are used to construct the matric 

basis elements 

®rs " (E%/(k°k°) (58) 

The diagonal elements eg^ of this basis are identical to the 

idempotents eg defined by (57). 

For application to primitive functions, it is more con­

venient to use an alternative expression for the matric basis; 

= .:'WLR:=:e:'V(k%,v2 
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These equations define operators built around Young operators, 

but adapted to the genealogy of 1-chains through equations 

(57) . 

The definitions are most easily understood by working 

, for which the standard tableaux are an example. Let D= 

T° = IZSJ and T° = LLLL', 
 ̂ [3J  ̂ I2j 

so that p^2 ~ (2/3) = p^^ 

The 1-chain defined by T^ is 

T^'^ = [T] —T°'^ = Il |21 —^ T? = iili. 
L X ^ \3j 

for which the Young idempotents are 

= : — 4'̂  = '̂ 12 — = '̂ 12̂ 3 

Neglecting numerical factors. 

i I, 
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The 1-chain defined by T^ is 

= [I] —^ T°'^ = E —^ Tj = ES / 
^ 2 L2j ^ lU 

for which the Young idempotents are 

E°'̂  = I E°'̂  =̂ 12  ̂E° = '5'Ĵ 3-4I2 • 

Neglecting numerical factors, 

e°'2 a I, 

®2 ^ ̂ 2 ^2^2^2' ^ ̂ A2'̂ 12̂ 13"̂ 12'̂ 12 ̂  ®̂'4L2̂ 13'̂ 12 ' 

The entire matric basis, then, consists of the operators 

®11 ̂  ®1 ̂  '̂ 12"̂ 13'̂ 12'̂ 13̂ 12 ' 

®21 ̂  ®2'̂ P21̂ 1̂ 1®l'̂  ̂  ̂ 2̂' 'A3'̂ 12/l3̂ 12 ' 

®12 = ®l'^Pl2^2^2®2'^ = AA3AA2 

®22  ̂®2  ̂̂ 1̂2'̂ 13r̂ l2 • 

The whole matric basis is not required for the construc­

tion of basis functions for the irrep. The operators 
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^®11' ®21^ span a minimal left ideal associated with T^; 

similarly, {e^2^ ®22^ span a minimal left ideal associated 

with T^. Either of these subsets can be used to generate 

basis functions. 

As an example, we apply e^2 ®22 the spin product 

function ©=a3a. Since the diagram corresponds to S=l/2, 

we should obtain YK spin functions for N=3, S=M=l/2. We have 

e^2 ~ 45*^2* (2,3) • CP and e22 = 16CP , where (? = ̂ i2^13'^12' 

Thus 

(P 0 = 1̂2̂ 3 = '>4̂ 2 (2aga-6aa-aag) 

= (2a0a-26aa-3aa+a3a) 

= 3(a3a-3aa), 

so ®12® ~ 12:^2' (2,3) * (aga-gaa) = ^2(^2 (aag-gaa) 

= 12(2aa3-Saa-a3a) 

= 12 [2aoi3-(a3+6ot) a] 

and ®22® ~ 16(P0 = 48(a3-3a)a. 

These are, indeed, the (unnormalized) YK spin functions ob­

tained for N=3, S=l/2, M=l/2 from the spin-coupling equations 

(28). Notice that e^2® corresponds to the branching route 

y/\ , while e22 corresponds to y\y, and that these functions 

are orthogonal. 

The same functions, within a numerical factor, are ob­

tained by means of the matric basis elements e^^ and e^i* 



www.manaraa.com

Ill 

A matric basis for orthogonal Serber-adapted representations 

When N is even, the standard tableau defines the 2-

chain ^d,n-2_ jD,N-4_ T° ,  

where ^ is either or S , depending on T^. 

For a geminal operator is defined in terms of the 

positions of the two highest numbers, N-1 and N. Denoting the 

row and column on which a number k appears as r^ and c^, we 

define 

_ J[1+(N-1,N)J/2 if ~N-1^^N ' 

[x-(N-x ,N) ]/2 ia. ^^N-l"^^N' 
^r = 

In other words, symmetrizes the numbers (N-1) and N if 

contains these numbers in the positions •••j (N-1) N or 

• * * i I j 
I '—' , but antisyminetrizes them if contains '—> 

or 
N-1 
N 

D 2 k D 2jC 
Geininal operators S^' for other tableaux T^' in the 

2-chain are defined analogously. 

A set of Hermitian ideinpotents is defined recursively 

for the 2-chain: 

D,N-2 _ _D,N-2  
®r " ̂r 

gP,N-4 ̂  ,N-4gD,N-4^D,N-2^ t ,N-4gD,N-4^D,N-2^ y^D,N-4 ̂ 
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e° = (E°S°e°'^)'^(E°S°e°'^)A° , (60) 

where is the number ^ D D D 

*Pr ' 

in which p° = i[C°E°S°e°'^] . 

The idempotents e^ are used to construct the matrie 

basis elements 

®rs= 

It should be noted that a diagonal element e^^ in this basis 

is identical to the element e^ defined by (60). 

As in the previous case, the matric basis elements can 

be given in a slightly simpler form. The result is 

. (S2, 

As an example of the application of these operators, 

we generate the Serber spin functions for N=4, S=l, M=0, 

using the primitive function a3aB. The Young diagram is 

D= {_J * , for which the standard tableaux are 

T. = !—! , T^ = ,D _ 12 3 „D _ 12 4 „D _ 13 4 

^ LiJ ' ^ [3j ^ [2j 

so that n n n 
p^l = I, P21 = (3,4), p^^ = (2,3) (3, 4 ) ,  

T% = 
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and - '^i23'^14' ^2 " ̂12^13' ^3 " ̂134^12 ' 

The 2-chain defined by T? is 

T?'̂  = iTjTj — T° = 1̂ 1 2 3 

^ ^ LU 

ê '2 = ê î  = = ,̂3 

and S° = ̂ 24 

The 2-chain defined by is 

T%'2 = [31]-̂  = 111 2 " 

lu 

Thus = ^,2 

and S° = ^34 

The 2-chain defined by is 

T°'2 = m __ = 1113 4 

(2j " [2j 

so that e°'2 = e°^2 = sg'^ = 

and S3 = (^34 

The matric basis elements {c^^|k=l,2,3}, which span a 

minimal left ideal associated with T^, are therefore [using 
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(62) and neglecting numerical factors] 

— «St -5<5-5 / • ( 3 , 4) • (P , 

631 = (3,4). f 

where <P - •̂ I4̂ I23'̂ 14-̂ 34̂ 12 

These are the operators that were displayed in (45) on 

page 74. Applying them to 6=a3a3/ one obtains the Serber func­

tions shown in (46) on that page. The branching routes can be 

read directly from the geminal symmetrizers and antisymme-

trizers in the matric basis elements. 

General definition of the orthogonal matric bases 

It is convenient to treat the matric bases for l-chains 

and 2-chains together, under one master formula. Let the 

m-chain defined by the standard tableau T^ be denoted by 

m numbers, i.e., the numbers N-jm, N-jm-1, ..., N-(j+l)m+l. 

When m=l, this operator is taken to be the identity. When 

m=2, it is defined to be a two-electron symmetrizer or anti-

jD/N-m ^ ̂D,N-2m ^ 
r r r 

where m is a factor of N. 

For each standard tableau T^'^^ in this chain, an Hermi-

tian operator is defined in terms of only the highest 
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symirietrizer, as discussed previously. 

A set of Hermitian idempotents is defined recursively 

in terms of each m-chain: 

D,N-ia „D,N-m 
®r = "r 

p,N-2ia _ ,N-2inj^D,N-2m^D,N-mj + ^ 
®r 

X (gD,N-2mj^D,N-2m^D,N-mj^j^D,N-2m 

e° = (E Ve°  ̂(E Ve° /k° , 

, .D D D Where k = o&'8 «p , 

in which = i[C^E^M^e^'^]. 

These idempotents are used to define the matrie basis 

e°s = (E°M°e° "p°g (E Ve° / (k°k°, (63) 

in which, it will be noted, e^^ = e^. 

It is convenient to use the matrie basis elements in the 

simpler form 

<P?Ps> ' <"> 

For use in generating basis functions for the irrep of 

labelled by D, a subset {ef^js fixed} of the matric basis 

is used. The operators in this subset all have the form 
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( number ) • e° (65a) 

where «•s = s s s s 
(65b) 

is fixed. 

Discussion 

We shall prove in the next section that the matric bases 

defined by (58)-(64) can be used to generate basis functions 

for orthogonal representations of S^. More precisely, we will 

show that 

(iv) they are linearly independent and span the 

group algebra, A(S^); 

(v) the diagonal elements e^^ are primitive idem-

potents generating the minimal left ideals 

occurring in the decomposition of AfS^). 

That the matric bases are YK-adapted (when m = 1) or 

Serber-adapted (when m = 2) is easier to see. Using (64), 

neglecting numerical factors, and noting that commutes 

(iii) 

(ii) 

(i) none of the elements e^^ vanishes; 

these elements multiply like a matric basis; 

they possess the adjoint property e^^ = ef^; 

with e^'^, e^'^, etc. 
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r r r r r r r 

X X (GC ' .''CD ,=2° '"EG ' 

= M°M° (e° ' 'V 'V '°e° ' C°E°p° ... 
rr r r r r r r r^rs 

= G° gC^N-Zm gD,m (gg) 

where G° = MV••• 

is a product of commuting operators. When m=l, is simply 

the identity. When m=2, it is a string of geminal symme-

trizers and antisymmetrizers. 

Comparison of (66) with the heuristically-derived oper-

T D 
ators EyEy and EgEg of the previous section shows that e^^ 

is YK-adapted when m=l and Serber-adapted when m=2. 

Orthogonal YK-adapted representation matrices were first 

obtained by Young (1932, p. 218). This is the representation 

known in the literature as "Young's orthogonal representa^ 

tion". Pauncz (1967) has shown that this representation is 

identical to that obtained by Yamanouchi. A matrie basis for 

such a representation can be obtained from the relations (54) 
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between orthogonal matrie basis elements and permutations. 

One obtains the so-called "orthogonal units" (Rutherford, 

1948, p. 50) 

= (d°/Nl) (67) 
ITS» p ir£> 

where the sum runs over the entire symmetric group. Goddard 

(1967a, 1967b, 1968) has employed this matric basis in 

quantum-chemical calculations. 

In nuclear theory, Jahn and co-workers (Jahn and 

van Wieringen, 1951; Elliott, Hope, and Jahn, 1953; Jahn, 

1954) have used matric bases for orthogonal YK- and Serber-

adapted representations. The latter were obtained from the 

orthogonal units (67) by finding the transformation between 

YK and Serber representations. 

General discussions of matric bases, considered accord­

ing to their expansions in permutations, have been given by 

Matsen and co-workers (Matsen, 1964; Klein, Carlisle, and 

Matsen, 1970). 

In all of these accounts, matric basis elements were 

described as linear combinations of all Ni permutations in 

S^. Thus matric bases were expressed as sets of wigner oper­

ators . The disadvantages of this approach were discussed in 

the last chapter. 

To the author's knowledge, the only previous attempt 

to obtain matric bases directly from the standard Young tab­

leaux was the derivation by Thrall (1941) of "Young's 
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semi-normal units". These have been discussed by Rutherford 

(1948). The work reported in the present chapter is an ex­

tension of Thrall's approach to orthogonal representations 

useful in quantum chemistry. 

The formulas given in the previous section would appear 

to avoid the drawbacks of other methods for obtaining basis 

functions. Referring to equation (65), one sees that basis 

functions for any irrep of can be generated by a set of 

operators constructed from symmetrizers, antisymmetrizers, 

and the permutations p^^ relating standard tableaux. Further­

more, the "right half" of each operator, given by (65b), is 

fixed throughout the calculation. 

Although the matric bases presented here are defined 

recursively, this does not cause serious computational diffi­

culties , The recursion gives rise to a number of row and 

column operators which must be applied in succession to a 

primitive function. As can be seen from the examples in the 

last section, one applies a symmetrizer or antisymmetrizer 

to the primitive, collects terms, and then applies another. 

The operators are all "read" directly from the standard tab­

leaux. A computer program for such a procedure would not re­

quire large amounts of storage - the chief drawback of other 

approaches. Such a program would have to perform very many 

permutations and collections of terms, but these operations 

involve only data transferrais and integer arithmetic, and 

can be performed quickly. 
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A computer program is being written to generate Serber 

spin functions by means of the matric basis elements (62). 

Basic Lemmas 

Before proceeding to the lemmas and theorems specific 

to orthogonal matric bases, we summarize some elementary re­

sults that will be needed. 

The definitions (57)-(64) used in the construction of 

matric bases involve numerical factors i[x], the coefficient 

of the identity in an element x of the group algebra. This 

function defined on AfS^) has two properties which we shall 

find useful. 

Lemma 1: 

If ]i is a number and x is an element of A (S^) , then 

i Eux] = yi [x] . 

Proof: If X = J Ç(P)P, then yx = ^ ]jÇ(P)P, so that 

i[yx] = uÇ(I). But iii[x] = yC(I) also. 

Lemma 2z 

If X and y are elements of A(Sj^), then i[xy] = i[yx]. 

Proof: If x=y ç(P)P and y = ^ %(P')P', then 

\ S(P)n(P"^) 

and i[yx] = \ n(P)?(P~^). 
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Since the sums run over an entire group, these expressions 

are identical. 

Notice that Lemma 2 implies the following cyclic prop­

erty: 
i [xyz] = i [zxy] = i[yzx], 

for any elements x, y, z of the group algebra. 

We now repeat the definition of the adjoint operation 

and prove two results. 

Definition; 

For any element x = ^ Ç(P)P in A(S^), the adjoint 

element is defined to be 

x" = I S* (P)P"^/ 

where * denotes the complex conjugate. 

Lemma 2= 

T "î" For any x and y in A(S^), (xy) = y x . 

Proof: Defining x and y as before, 

(xy)"^ = El I S(P)n(P')PP']T = 11 Ç*(p)ri*{p')p'"^p"^ 
p  p i  P  p i  

= [I [I ç*(P)P"^3 = y'x?. 
p ' p 

Lemma £: 

For any x in A(S^) other than the null, i[xx^] > 0. 
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Proof: If X = I C(P)P, then = % Ç*(P)P"^, so that 

i[xx^3 = I U (P) I ^ > 0, 
P 

if at least one coefficient Ç(P) is nonzero. 

We shall make frequent use of two properties of the 

tableau operators R^, C^, and E^. These are proved in Ruther­

ford (1948), so they are quoted here without proof. 

Lemma 

For every D, r, and s, 

PL Prs <=s = =r ^rs ' 

so that P°s E° = E° . 

Lemma 

For every D, D', r, s, and every x in 

Ef X E»' = 6»»' 8» i[E»,x], 

where 0° = [N]/d°] > 0, and = P°gSg = E^p^^ 

Lemmas Concerning the Matric Bases 

Lemma 7_; 

If the numbers N-1 and N are on different rows and 

different columns in a standard tableau containing N num­
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bers, then e^'^ does not contain the transposition 

(N-1,N): i.e., the coefficient of (N-l/N) in is 

zero. 

Proof: The element e^'^ does not operate on the numbers N-1 

and N. Therefore, if e^'^ were to contain (N-1,N) , E^ 

would have to contain a permutation of the form (N-l,N)p, 

where p is a permutation which does not affect N-1 or N. We 

shall show that E^ can contain no such permutation. 

There are two forms possible for T^, namely 

.k N-1 (68) 

. .N 

and ' * * ^ (69) 

...N—1 

It is sufficient to consider only the former. With of the 

form (68), E^ will contain only permutations of the form 

f wbere r^ is a row permutation for the row 

containing N, etc., and f, c are permutations which do not 

operate on N-1 or N. 

If r r^-^CN^-l ̂  = (N-l,N)p, 

then ^N-l^N^^-1 " (N-l,N)f~^pc~^ = (N-l,N)q, (70) 
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where q dees not operate on N-1 or N. We will prove that (70) 

is impossible. 

According to (70), ^N-l^N^N^N-l be a permutation 

in which N is replaced by N-1, and N-1 by N. We know from the 

form (68) of the tableau, however, that the 

form 

(...k...N-1)(...N)(...k...N)(...N-1), (71) 

where the dots represent numbers other than k, N-1, or N. 

Now, because of the form of the tableau, no two of these 

permutations can share any numbers other than k, N-1, and N. 

Thus if, in c^ = (...k...N), N is replaced by a number & 

other than k or N-1, the product r^_^r^c^c^_^ will be a 

permutation (...N&) because neither r^_^ nor r^ will operate 

on 2. Consequently, if any permutation of the form (71) can 

satisfy (70), it will be one in which the numbers represented 

by dots play no part at all. We may just as well consider the 

simpler tableau 

D ^ k N-1 
r N 

But then 

E° = [l+(k,N-l) ] [l-(k,N) ] 

= I + (k,N-l) - (k,N) - (k,N,N-l). 

We have proven that can contain no permutation of 

the form (N-l,N)p if is of the form (68). The proof for 

(69) is similar. 
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Leinma 

iCE° e°'^] = e°'*], k>0, 

for every D and r, and for m=l or m=2. 

Proof: We deal here with operators defined in terms of a 

single standard tableau and its m-chain. We therefore drop 

the superscripts and subscripts, and denote by E, by 

M, and e^'^ by e . 

For a 1-chain, it can be shown (Rutherford, 1948, p. 28) 

that 
E = E + (terms operating on N) 

= 2" + • 

Therefore, i[Ee ] = i[E e ] + i[t^e ]. The last term is zero 

because e does not operate on N, and t^ is made up only of 

permutations that operate on N. Thus t^e cannot contain the 

identity. This proves the theorem when m=l. 

For a 2-chain, there are three cases. 

(i) If N-1 and N appear on the same row of T^, then 

because R^ contains the idempotent and is a 

group sum. Thus 

i[EMe"] = i[RCMe~] = i[RCe"M] = i[MRCe"] 

= i[RCe ] = i[Ee~]. 

We have used Lemma 2 and the fact that M commutes with e . 

(ii) If N-1 and N appear on the same column of T^, the 
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argument is similar: = C^, so that 

i[EMe ] = i[RCMe ] = i[RCe ] = i[Ee ]. 

(iii) If N-1 and N occur on different rows and different 

columns in then 

i[EMe"] = i[E • (1/2) {I± {N-1,N) } • e"] 

= (l/2)i[Ee"] ± (l/2)i[E-(N-1,N)-e"] 

The last term contains i [E* (N-1,N) «e ] = i[Ee «(N-l/N)]/ 

which is zero unless Ee contains (N-1,N). We proved in 

Lemma 7 that this is impossible. 

In all three cases, i[EMe ] = k*i[Ee ], where k>0. By 

an argument exactly parallel to that for 1-chains, it can be 

shown that i [Ee ] = i [E~e ]. This proves the theorem for 

m=2. 

Existence Proofs 

Our purpose in this section is to show that none of the 

matric basis elements vanish or blow up. The definitions in­

volve factors in the denominators. We begin by proving 

that these quantities are never zero. As a by-product, we 

are able to show that the diagonal elements of the matric 

basis are idempotent. 
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Theorem 

For any D and x, and for m=l or m=2, 

(a) = i[C° E° e°'®] = i[C° bP C° rf > 0; 

(b) i[E° e^'M] ̂  0; 

(c) e^ is idempotent and self-adjoint. 

Proof: The proof is by induction. Using the notation of 

the previous lemma, we assume that 

i[E e ] ^ 0, e e = e , e^=e, 

then show that these properties recur: that 

i[Ee] ̂  Of ee = e, e^ = e, (72) 

and also that i [CEMe ] > 0, i [EMe ] ̂  0. 

This is shown in five steps. 

(i) We assume that i[E e ] ̂  0, so that i[EMe ] -^ 0 

by Lemma 8. This is the induction for part (b) . Therefore, 

X = EMe is not the null, and i[xx'] > 0 by Lemma 4. 

(ii) i[CEMe~] = i[CRCMe~] = i[CR RCMe"]/©^ 

= i[RCMe"CR]/oa , 

using Lemmas 1 and 2. By construction, M is idempotent and 

commutes with e : Me = Me M. In addition, we assume that 

e idempotent, so Me = Me e M, and 
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i[CEMe"] = i[(RCMe")(e"MCR)l/o^. 

Furthermore, (RCMe~)^ = e~^M^C^R^. We assume that e ^ = e , 

"Î* *î* "f" and M = M, C = C, R = R by construction, xhus 

(RCMe")"^ = (e~MCR) 

and i [CEMe 1 = i[(RCMe ) (RCMe )^]/oa = i[xx']/o& > 0. 

This is the induction for part (a). We have yet to justify 

equations (72). 

(iii) Since p = i[CEMe~] ^ 0 by (ii) , the quantity 

i[Ee] = i [Ee~MCEMe~]/(©p) is defined. But 

Ee MCE = E-9i[Ee MC] by Lemma 6 ,  

= E-ei[CEMe ] using Lemma 2, 

= E-0p , 

so that i [Ee] = i[EMe ] ̂  0 by (i) . 

(iv) Assuming that e is idempotent, 

ee = e MCEMe e MCEMe / (ôp)^ 

= e~MC*EMe~CE»Me~ / (©p)^ 

= e^MC'EGp-Me" / (0p)^ [as in (iii)3 

= e~MCEMe~ / (©p) 

= e . 

(v) e^ = (e MCRCMe )'/(©p), since © and p are real. 

We assume that e = e , so that 
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e"'" = e"M̂ Ĉ R̂ Ĉ M̂ e"/(ep) 

= e~MCRCMe~/(©P) 

= e. 

This completes the induction scheme. We now prove that 

the induction has a base. 

For a 1-chain, ^ = e^'^ ^ = I, so that ^ 

is idempotent and self-adjoint, and 

ijgD,N-l^D,N-l] = i[i] = 1 0. 

For 2-chains, ^ = e^'^ ^ = [I±(1,2)1/2, so that 

eD,N-2 idempotent and self-adjoint, and 

i[gD,N-2gD,N-2j ^ = 1/2 ^ 0. Q.E.D. 

Theorem 

None of the elements e^^ is the null. 

Proof: We prove that ffe^^Eg does not vanish. This is 

The underlined part is by Lemmas 6 and 2 [the argu­

ment is similar to that in step (iii) of Theorem 1], so that 

=r «:s -s = p:s < 
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= Prs 4 ®° (p^/pD)!/:. 

It was shown in Theorem 1 that p^, p^, and i e^'™] are 

nonzero. Also, 0^>O by Lemma 6 and P^s^s iiot the null 

(Rutherford, 1948, p. 16). This completes the proof. 

We have now proved that the definitions (57)-(64) of 

the orthogonal matric bases yield existing, nonvanishing 

operators. 

Multiplicative Properties 

Theorem 1 has already shown that the diagonal elements 

e^ = e^^ are idempotent. This fact, and the two lemmas that 

follow, are enough to establish the matric basis multiplica­

tion relation. 

First we must show that 

e®'"" 2°'̂  «r'"" • (73) 

It is clear to begin with that 

because and are idempotent and commuting. It remains 

only to show that 
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Gg'* Mg = null if rjis. 

This is the purpose of Lemmas 9 and 10. 

Lemma 9_: 

(For 1-chains) Suppose that two standard tableaux T^ 

and Tg belong to the same diagram, D, and differ in the posi­

tion of the highest number, N. Then T^'^ and T^'^ belong to 

different diagrams, and 

X Eg'l = null = Eg'l X 

for every x in the group algebra. 

(For 2-chains) Let two standard tableaux, T^ and T^, 

belonging to the same diagram, D, differ in the position of 

at least one of the two highest numbers, N-1 and N. Then 

M° = null = ^ 
r s s r 

or T^'^ and T^'^ belong to different diagrams. In the latter 

X E°'2 = null = ED'2 X E»'2 
r s s r 

for every x in A(S^). 

Proof: For 1-chains, it is obvious that T^'^ and T^'^ will 

belong to different diagrams. The conclusion follows from 

Lemma 6. 

For 2-chains, the argument is similar except when 
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= (N-1,N)T^ . In such a case, and will belong 
2r S jT s 

to the same diagram, but we have defined and such that 

one will symmetrize N-1 and N, and the other will antisymme-

trize them. In this case, 

Mg = null = Mg . 

Lemma 10 ; 

Let and be different standard tableaux belonging 

to the same diagram, D. Then 

M° e°'^ Mg = null. 

Proof: If and differ in the positions of their highest 

one (for 1-chains) or two (for 2-chains) numbers, then Lemma 

9 applies directly, and, since commutes with e^'^ for 

every t, 

D D,m D.m^D ^ ̂  D D,m D,m 
r r  s  s  r s r  s  

= (number) x 

gD,mjyjD,lUgD,2m D,2m^D,m„D,m^D,,m D,2m 
r r r  s  s  s  s  s  s  

where one or the other of the underlined factors is the null. 

Otherwise, there is a number k such that removal of the 

highest km numbers from and results in tableaux 

and T^ykm differing in the positions of their highest m 
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numbers. Then recursive substitution gives 

=  ( n u m b e r )  I ^ e ^ ' x  

X ' 2m^D, 2m^D / m^D, m^D, m^ ,m^D, 2m^ 
r r r  s  s s s s s  s  

= (number) ag ... ̂ ,km^D, (k+l)m^D, (k+Dm^^^km ... 

where the underlined factor is the null, by the argument 

given above. This proves the lemma. 

Lemmas 6 and 10 and Theorem 1(c) put us in position to 

show how the elements e^^ multiply. 

Theorem 3: 

= «"'«St 

Proof: 

e$3e°; = leV(p°p°p°'p°V/̂ rl X 

where the underlined factor vanishes if D^D', by Lemma 6. 

Therefore, 
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By Lemma 10, the underlined factor is so 

X (8D)-2(p°)-l{p°pG)-l/2 

Using the fact that , from Lemma 5, = ^su u u s s^su 

= «"'«St ^ 

. (e°)-"(p°)-l(p%)-l/" 

By Lemmas 6 and 2, the underlined part is 

E° = E° e°i[c°E°M°e°'»'] = E° e°p° , 

so that 

= «°°'«st -?"^rspLWu"" / 

= «DG'dst 

= «"'«St 

This proves the theorem. 
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Orthogonal Operator Bases 

for Every Irreducible Representation 

It follows from Theorem 3 that a matrie basis 

{e^gjall D,r,s} consists of 

I(d^)^ = Ni 
D 

linearly independent elements. The argument was given on 

page 78. Thus the YK- and Serber-adapted matric bases intro­

duced here span the entire group algebra. 

Furthermore, they have been defined in such a way that 

= [ (EVe° TpD^ ]/ (kV) 

= 

Thus these matrie bases have the adjoint property (53). It 

follows that a subset 

Bg = {e^gjs fixed, all r} 

spans a carrier space for an orthogonal representation of S^. 

We say that B^ is an operator basis for an orthogonal repre­

sentation, or for short, an orthogonal operator basis. 

Now consists of elements e^ = e^ e^ , with s fixed, S rs JTs ss 
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spanning a left ideal generated by the idempotent e^^. As a 

matter of fact, this left ideal is minimal, for we now show 

that e^g is a primitive idempotent. 

Theorem 

For any D, D', r, and s, and any element x in the group 

where X(x) is a number that depends on x. 

Proof : 

e°xe°' = 
r s  r  r r r r r  s  s  s  s  s  s  

X (eVp°P°')-^ 

Applying Lemma 6 to the underlined portion. 

.DD' , , D =6 *(number)«e^^ 

We have as a special case of this result, 

e° X e° = X(x)e° , 

for arbitrary x. Thus e^ has the property (47): the diagonal 

elements of the matric bases are primitive idempotents. 

These idempotents, unlike the Young idempotents, gener­
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ate the minimal left ideals occurring in the decomposition 

of the group algebra. This we prove by showing that the iden­

tity, the generating unit of the whole group algebra, decom­

poses as the sum of the linearly independent elements e^, 

which generate minimal left ideals. 

Theorem 5 : 

n = n = I 
Dr Dr 

Proof; Let T = e^ . Since the matric basis spans A(S^), 
Dr 

an arbitrary element x can be expanded in the form 

X = m 

It follows that 

= mi.i = m 

= X, 

for arbitrary x. Similarly, Tx = x. It follows that T = I. 

It should be noted that this theorem cannot be proved 

with Young idempotents in place of the e^. This is because 

^ "^rs^r ' general. Young operators do not multiply 

like a matric basis. 
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The minimal left ideals for irrep D that occur in 

the decomposition of the group algebra are those generated 

by the idempotents {e^jr=l,2,...,d^}. The minimal left ideals 

generated by {E^l r=l,2,...,d^} can be shown to differ from 

these by equivalence transformations. 

We conclude by summarizing the useful properties of the 

matric basis elements e^^. 

Each distinct irreducible representation of the symmet­

ric group is labelled by a Young diagram, D. Spin represen­

tations are labelled by diagrams with one or two rows. 

The irrep labelled by D occurs d^ times in the regular 

representation. Similarly, d^ carrier spaces for that irrep 

occur in the decomposition of the group algebra. Each of . 

these irreducible carrier spaces is a minimal left ideal 

associated with a standard tableau T^ belonging to the dia­

gram D. 

The minimal left ideal associated with T^ is generated 

by Bg = e^g, and spanned by the subset 

Bg = i®rsl^ fixed, all r} 

of the matric basis. 

We have shown how to construct matric bases for orthogo­

nal YK- and Serber-adapted irreps. Basis functions for these 

irreps are generated by applying the operators in B^, for 

suitable D and arbitrary s, to a primitive function, <j). These 
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basis functions will be orthogonal, since 
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CONSTRUCTION OF SPACE FUNCTIONS 

Generating Dual Space Functions 

by Means of the Matric Bases 

Sometimes it is convenient to consider a SAAP, not in 

the form 
G^fNSM) = ^[(j> (N) e ^(NSM) ] , (74) 

but in the alternate form 

$ (NSM) = [d{NS)]~^y <{). (NSa)eQ (NSM) , (75) 
a 6 P P 

where 4)^ and 0^ are dual space and spin functions. This sub­

ject was discussed on pages 7-9. The spin functions span an 

irreducible representation 

[P]NS ̂  p 

of the symmetric group. The space functions span the dual 

representation _ 

When a SAAP is constructed in the form (75), there is 

no sum over Ni permutations, as there is in (74). Thus it 

may be more convenient to construct SAAP * s from dual space 

and spin functions, if these can be generated easily. The 

construction of dual functions by means of Wigner operators 

has been discussed by Kotani et (1955) , Harris (1967), 

and Sullivan (1968). Goddard (1967a, 1967b, 1968) has made 

extensive use of matric basis elements (Young's orthogonal 



www.manaraa.com

141 

units) for this purpose. 

We now discuss how dual space and spin functions are re­

lated in terms of Young diagrams. We have shown that spin 

representations are labelled by diagrams with one or two 

rows. It turns out that space functions transform according 

to irreducible representations associated with diagrams hav­

ing one or two columns. 

A diagram obtained from another diagram by interchanging 

rows and columns is said to be conjugate to it. For example, 

_J is conjugate to , 

while j-j-' is self-conjugate. Thus space and spin diagrams 

are conjugate. This fact seems to have been first mentioned 

by Weyl (1931), who gave the proof by tensor methods. The 

proof that follows uses multiplication properties of Young 

idempotents, and is more in keeping with the rest of our dis­

cussion. The proof consists of two theorems. 

Theorem 

Let be the irreducible representation of corres-

ponding to the Young diagram D. In particular, let F be the 

antisymmetric representation, corresponding to the diagram 

{1^}. Then the direct product 0 is the irreducible re­

presentation corresponding to the diagram conjugate to D. 

Proof: Since is one-dimensional, ® F^ is irreducible. 



www.manaraa.com

142 

and is therefore labelled by some Young diagram, D': 

r°' i 0 . 

We consider the symmetries of functions transforming 

according to these three representations. The carrier spaces 

can be considered to be generated by Young idempotents, since 

carrier spaces generated by matric basis idempotents differ 

from these only by equivalence transformations. 

a 
A function f^ transforming according to T is antisymmet­

ric with respect to any transposition, and can be generated 

from a primitive function f by applying the antisymmetrizer; 

fA = . 

Functions f^ , transforming according to F^, can be gen­

erated from f by operating on it with (X^E^), where is the 

Young idempotent for some standard tableau belonging to 

\ = I =sPst 

is a linear combination of the p^^, with t fixed. This is 

discussed on page 87. 

D ' Thus a function transforming according to p is given 

^ fo' = I = I ' 
s s 

where u is arbitrary. It follows that f^, ̂ 0 for at 

least one value of r. 

Let f^ and f^ be functions transforming according to 
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r"̂  and r°, respectively. Then transforms according to 

D ' 
r . Thus it must be that 

for at least one value of s_. 

D ' 
We now evaluate f^f^ directly, making use of the fact 

that f^ = X^E^f, for some value of t. In the following, we 

D" denote the row and column groups for a standard tableau T^ 

D " D " 
by and , respectively. We use the symbols .X(a) and 

<§(^) to mean the antisymmetrizer and symmetrizer for a group 

H, Then 

Eg = Ï ^ Ï e(c)c(fafD) = n E (c) (rcf^) (rcf ) 
r c rc 

= II e(c)£(r)e(c) f^Crcf^) 
rc 

= I e(r}r I c f^ , 

where the sums run over re&g and oeOP . Thus 

D ' 
Now let D' be the Young diagram conjugate to D', and T^ 

D ' 
be the standard tableau conjugate to T^ . Then 

-c;- ana C-=(£^, 
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so that 

= Â cS'%g'xt*tCt  ̂

= f. 

The underlined operator is the null unless D'=D (Rutherford, 

1948, p. 21). Thus 

f^f^ = 0 unless D' = D. 
s AD 

Comparing this result with (76), it is seen that D ' must be 

the diagram conjugate to D. This completes the proof. 

Theorem 7_: 

D D ' Let r and r be real irreducible representations of 

A 
Sjj corresponding to Young diagrams D and D '. Let T be the 

antisymmetric representation, corresponding to the diagram 

{1^} = {1,1,...,1}. 

D D ' A 
Then the direct product T 0 T contains T only if D 

and D* are conjugate diagrams. If D and D' are conjugate, 

D D * A 
r 0 r contains T once only. 

A D D ' 
Proof: The number of times that r is contained in r ® T 

is 
a(A,D®D') = (Nl) X (P)X°(P)X° (P), 

P 



www.manaraa.com

145 

where x^(F) is the character of the permutation P in r^. 

However, it was shown in Theorem 6 that r^®r^ = 

where D is conjugate to D. Thus Using 

the orthogonality property of real simple characters, 

a(A,D0D') = x°(P)X°'(P) 
P 

= Ô (D,D') . Q.E.D. 

We have proved that basis functions and {6g} for 

irreducible representations of can be used to construct 

antisymmetric functions of the form 

" = I 

only if the irreps spanned by {4^} and are associated 

with conjugate Young diagrams. 

Suppose that $ is a space primitive function and Q, a 

spin primitive. As discussed in the last chapter, spin func­

tions for the spin diagram D can be generated from 9 by oper­

ating on it with the set 

Bg = {ePgjs fixed, all r} 

of matric basis elements, for arbitrary s. Similarly, space 

functions for the diagram D conjugate to D can be generated 

from by means of the operators 
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fixed, all t} , 

for arbitrary u. 

A space-spin wave function of the form 

i = I (e°^e) (77) 

will satisfy the Pauli Principle. For 

P* = I (Pe°y4) (Pe°g0) , 

and, using (51), 

ri j 

But conjugate diagrams correspond to dual irreps, so 

[P]ir = E(P) [P'ljri / 

and 

P4. = s 

= eCPin 

= «ij te?u4>) (GjsG) 

= e(P)I (e^^e) 

= e (P) $ . 
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We assume that the spin primitive, 0, is chosen to be 

an eigenf unction of S^. Then $ will be an eigenf unction of 

and S^, since its spin components are generated by an 

operator basis for a spin representation. Thus (77) shows 

the construction of a SAAP by means of matric basis elements. 

Simultaneous Eigenfunctions of L and S 

by Matrix Diagonalization 

Since spin-free atomic Hamiltonians are spherically 

symmetric, they commute with the orbital angular momentum 

ys 2 
operators L and L^. For this reason, it is usually conven­

ient in atomic calculations to use a trial wave function 

which is an eigenfunction of L^, L^, S^, and S^. It is easy 

to extend the method of pages 59-67 to cover orbital angular 

momentum. 

The general CI wave function is of the form (12) ; 

"i-CNSM ) =11 c(*_,na)J^O (N)e , (NSM )] . 
 ̂ 4)̂  TT'a " TT ira b 

The sum over 4)^ includes only space products containing dif­

ferent orbitals: no two space products are related by a permu­

tation. The wave function 't'(NSMg) is general in the sense 

that it may contain one configuration or many, depending on 

^2 the SAAP's included. It is already an eigenfunction of S and 

S„, and we assume that the © , have been constructed by one 2 ' na 
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of the methods described earlier. 

Each space product is an eigenfunction of L^: we write 

. If the sximmation includes only space products with 

one value of then Y will be an eigenfunction of with 

that eigenvalue: 

TO 

It is possible to choose the coefficients c(4)^/Tra) in 

^2 such a way that Y is also an eigenfunction of L . The pro­

cedure is similar to that used for spin functions. One cal­

culates the L^-matrix over SAAP's 

with N, S, and Mg fixed, then finds the linear combina­

tions of SAAP's that diagonalize the matrix. 

The calculation of the L -matrix is more complicated 

than that of the spin matrix, but, again, the computation is 

greatly simplified by the space and spin conventions we have 

introduced. 

Since = £_£^ + £^(£^+1) , 

= <£2(é^e^,jU[4,pep,gl> , 
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The second integral is 

5(4>^.'j>p)5(TO,pB) (2^/NI), (79) 

by equation (13). This leaves only the integral 

= (N!)-i I e(P)[Pl^?_p-g<£.VjP$p> 

where 

In terms of one-electron ladder operators, 

I = || , 

the sums running over all electrons. 

We define 

(l if £_ (i)L_j_ ( j ) 4j^ contains 

A^p(ifj) = the same orbitals as (p^; 

0 otherwise. 

,TTP 
ij 

verts <p into L_(i)L^(j)0^. Then 

If A^p(i,j) = 1, define to be any permutation which con-
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I = (N!)-l A^p(i,j)c(P^e) , 

or, since the matrices representing geminal permutations are 

diagonal, 

I = («!)-' 11 I 

We have used equation (11). 

Putting (79) and (80) into (78), we obtain the result 

= )«(%&,p%) (81) 

+ ̂ nï • 

Appendix E contains a Fortran listing for a program that 

generates simultaneous eigenfunctions of L , L^, S , and 

for any eigenvalues. Equation (81) is used in this program -

in Subroutine FLSQME - to calculate the -matrix elements 

between SAAP's. In all, the program contains six subprograms. 

Their interrelations are shown in Figure 9. 

Sample running times, to obtain eigenfxinctions for 

every eigenvalue L, are shown below; 
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N S M- M- Configuration SAAP's CPU time 
^ ^ (sec) 

2 1 0 0 1 0.4 

4 0 0 0 
4 

p 2 0.6 

4 0 0 0 p^d 8 1.3 

4 0 0 0 d4 8 2.0 

4 1 0 0 d4 7 H
 

K
O

 

6 0 0 0 sp^d^ 34 

00 

It should be noted that these are "worst-case" times. 

The CPU times include the internal processing of large 

amounts of testing output. Also, higher values of |M^| would 

reduce the number of orbital products required, and so lower 

the running time. 

Schaeffer and Harris (196 8) have reported a method for 

constructing L-S eigenfunctions as linear combinations of 

Slater determinants, using matrix diagonalization. They deal 

only with M^=L, Mg=S. Running times are comparable to those 

reported here. Rotenberg (1963) wrote a machine-lanc age pro­

gram for the IBM 7090 to generate L-S eigenfunctions by means 

of Lowdin projection operators. Running times for the exam­

ples above were not reported. Neither of these procedures, of 

course, generates wave functions as linear combinations of 

SAAP's. 

All programs that generate L-S eigenfunctions require 
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a great deal of storage if they are to deal with more than, 

say, eight electrons. In fact, this seems to be the chief 

limitation on their use. The program given in Appendix E is 

designed to handle a maximum of eight electrons. A similar 

program, but with different storage arrangements, is being 

developed to handle as many as fourteen electrons. 
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START 

\l 
/ Given N,L,M ,S,M , 7 
t L. b / 
/and the configurations/ 

(MAIN) 

For each configuration: 

I' 
A. Get the SAAP's 

1. Get all space 

products 

2. Get all spin 

eigenfunctions 

11 

10 

(SSQEIG) 

For given space prod­

uct ; 

generate all appro­

priate PSC's; 

get all spin functions 
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(FLSQME) 
2 

Get value of L -

matrix element 

between two SAAP's 
I... 

12 

15 

(PPMAT) 

Get matrix element 

of a given permu­

tation between 

given geminal spin 

products 

B. Calculate the 

L^-matrix over 

SAAP's 

16 

C. Diagonalize the 

Î, -matrix 

STOP 

17 

18 

(SEIGEN) I 

Get all spin functions j 
I for given S,M_,PSC | 
L £ J 

(EIGEN) 

Matrix diagonalization: 

yields eigenvectors as 

well as eigenvalues 

Figure 9. Organization of program generating simultaneous eigenfunctions of 
A 2 A A 2 A 

L , Lg, S^, and Sg 
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APPENDIX A: NOTATION 

(i) The symbol "d" is used to mean "is defined to be". 

(ii) "Irrep" means "irreducible representation". 

(iii) The set X = X2, ..•/ is sometimes denoted 

by X = {x^|i=l,2,...,n} 

or by X = {x^|all i} . 

(iv) The symbol "e" means "belongs to". For example, x^eX 

in (iii). 

(v) When a summation is written without explicit limits, 

it should be understood to run over the entire set 

to which the index belongs. 

(vii) Dirac bra-ket notation is used for integrals: 

<u^uj|v^vg> = // u^(l)uj (2)v^(l)vg (2)dx^dx2; 

<u^u.jH|v^vg> = // (1)ut(2)Hv^(l)Vg(2)dx^dx2. 
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APPENDIX B: THE SYMMETRIC GROUP 

The symmetric group, consists of the Ni permutations 

of N objects. Here we consider permutations of electron la­

bels, as though electrons could be labelled. 

Let a, b, and c be three one-electron orbitals. By 

a(l)b(2)c(3), we denote that space product in which orbital 

a is occupied by electron 1, b by 2, and c by 3. The trans­

formation that changes a(l)b{2)c(3) into the new product 

a(3)b{l)c(2), say, is a permutation of all three electrons: 

it replaces electron 1 by electron 3, 2 by 1, and 3 by 2. 

One standard notation for this permutation would be 

a(3)b(l)c(2) = (312) a(l)b(2)c(3). 

This is the so-called "two-row" notation. The same permuta­

tion is sometimes written (12 3\ 
4. ^ ; 

\3 1 2/ . 

A more compact notation for the same example would be 

a(3)b(l)c(2) = (1,3,2) a{l)b (2) c(3) . 

The symbol "(1,3,2)" is cyclic: it reads, starting at the 

left, "electron 1 is replaced by electron 3, 3 by 2, and 2 by 

1". In this notation, the permutation (n^,n2,...,n^J is 

called a "k-cycle". Our example was of a 3-cycle. A 2-cycle 

permutation interchanges two objects, and is called a 

transposition. The identity, I, is a one-cycle. 
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All permutations can be written as products of trans­

positions. For example, (1,3,2) = (1,2)(1,3) = (1,3)(2,3) = 

(2,3)(1,2). If a permutation is the product of an even number 

of transpositions, it is said to be an even permutation; 

otherwise, it is odd. 

The cycle structure of a permutation is a list of the 

cycles occurring in it, given in the order of decreasing cy­

cle length. The notation is similar to that for partitions 

of the number N. The following are examples from S^: 

permutation cycle structure 

(1,3,4,2) {4} 

(1,3).(2,4) {2,2} 

(1,2,3) = (1,2,3).I {3,1} 

(1,3) = (1,3).I.I {2,1^} 

I {I*} 

The cycle structures of permutations can be used to 

classify them: it can be shown that all permutations with 

the same cycle structure are equivalent. It is also true that 

a permutation and its inverse have the same cycle structure. 

Transpositions are their own inverses. 

It is convenient to introduce a shorthand for manipu­

lating permutations. Our first example could be written 

bca = (l,3,2)abc. 

in which the orbitals are listed in the order of the occupy­
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ing electron labels. Operations with permutations are simpli­

fied if, in this notation, the permutation is read; "move 

the orbital in the first position to the third position, 

that in the third position to the second position, and that 

in the second position to the first position". The result is 

the same as before, but we think in terms of orbital permu­

tations . 

Using the cyclic permutation notation, the symmetric 

group for three objects, S^, consists of the following six 

permutations; I, (1,2), (1,3), (2,3), (1,2,3), and (1,3,2), 

where I is the identity. The multiplication table for this 

group is 

I (1,2) (1,3) (2,3) (1,2,3) (1,3,2) 

(1,2) I (1,3,2) (1,2,3) (2,3) (1,3) 

(1,3) (1,2,3) I (1,3,2) (1,2) (2,3) 

(2,3) (1,3,2) (1,2,3) I (1,3) (1,2) 

(1,2,3) (1,3) (2,3) (1,2) (1,3,2) I 

(1,3,2) (2,3) (1,2) (1,3) I (1,2,3) 

The antisymmetrizer for SN is defined to be 

A = (NJ)"^ l£(P)P , 
P 

where the sum runs over the whole group and e(P) is +1 
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when P is even and -1 when P is odd. Since the sum extends 

over a complete group, the antisymmetrizer is essentially 

invariant under left- and right-multiplications by permuta­

tions : 

PM = (NI)"^ %E(P)P'P = (NI)~^ y e(P'"^P")P" 
p p" 

= (Nl)'^ £ (P*"^) I S(P")P" = E(P')v4 . 
P" 

Similarly, ^P* = e(P')-4 

From this it follows that À is idempotent; 

ÀA ̂  (P)PJ = (Ni)~^^e(P)e(pM =>4(N1)~^J(+1) 
P P P 

We now find the Hermitian adjoints of permutations and 

antisymmetrizers. Consider the N-electron integral <Pif)[(j>>, 

where ip and <j> are well-behaved functions. The Hermitian conju­

gate of P, P', is defined by <P^|$> = <^|P^$>. On the other 

hand, the integral is a number and is unaffected by a permu­

tation of the dummy variables. Thus 

<P^{$> = p"^[<p^{ç>] = <P~^PTj;lP~^(f)> = <T|j|P~^(J». 

4- — 1 
Comparison shows that P = P 

It follows that the antisymmetrizer is self-adjoint: 
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<j<Tji|4» = (N!)"1%E(P)<P^|4> = (N!)"l%e(p)<#|p"l*> 
P P 

= (N1)"^^E(P'"1)<^|P'$> = (N1)"^J E(P')<^|P'*> 
p i  p i  

= <1̂  |v4({)> 

Thus = v4 . Since =>4/ it follows that 

<M> \ÀÀ^> = <Tp M4>> 

We have merely summarized some important results needed 

here. For a complete account of this material, the reader is 

referred to the book by Hamermesh (1962). 
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APPENDIX C: COMPUTER PROGRAM FOR 

SERBER SPIN EIGENFUNCTIONS 
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SUBPROGRAM 1. 

IMPLICIT REAL*8(F), INTEGER(A-E,G-Z) 
DIMENSION PS(4),L(13,4),SEIGV(13),FLEIG(169), 

1 FC(I3,13) 
C 
c  
( 2  * *  * * *  * * * *  *  * * * 4 : *  * *  * *  * *  * *  * *  
r 
C SSOEIG GENERATES SERBER SPIN EIGEMFUNCTIONS FOR USE 
C TN SAAP'S WITH NOD DOUBLY-OCCUPIED ORBITALS: I.E, 
C SPIN FUNCTIONS ANTISYMMETRIC IN THE PJRST NOC GEMINAL 
C PAIRS, 
C 
n 
C INPUT -
C NP = 
R NUMBER OF GEMINAL PAIRS, OR ONE-HALF THE NUMBER 
C OF ELECTRONS» WHICH IS ASSUMED EVEN, 
R NDO = 
C NUMBER OF DOUBLY-OCCUPIED ORBS IN THE SAAP. 
R SKFFP = 
C TOTAL S QUANTUM NUMRER. 
r MKEEP = 
C TOTAL SZ-EIGENVALUE. 
C 
c  * # * * * * * * * * * * * * * * * * * * » * * * * * *  
c  
C 

FACT2 = 7,0710678118654750-01 
TNP = NP + NP 
TTNP = 2**NP 

5 MAGMT = LABS(MKEEP) 
NPS = 0 

C SWEEP DECIMAL REPS OF PS'S 
ON 40 DPS=T,TTNP 
TO = OPS - 1 

C CONVERT DEC REP TO PS'S 
PSSUM = 0 
DO IN P=1,NP 
PI = 2**(NP-P) 
PSP = TD/PI 
PS(P) = PSP 
IF(P.GT,NOO) GO TO 9 
IF(PSP.NE.O) GO TO 40 

9 TO = TD - PSP*PI 
7 0 PSSUM = PSSUM + PSP 

C KEEP ONLY PS COMBINATIONS APPROPRIATE TQ MKEEP 
IF(PSSUM,LT,MAGMT) GO TO 40 
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NPS = NPS + 1 
C GET SSQ-EIGENFUNCTIONS CORRESPONDING TO MKEEP AND 
C GIVEN PS«S 

CALL SEIGEN(NP,PS,MKEEP,$EIGV,FLEIG,NPPOD,L) 
IP(NPROD.NE, 0) GO TO 35 
NPS = NPS - 2 
GO TO 40 

15 NSP = 0 
DO ?7 ISEF=i,NPROD 
N? = (TSFF-])*NPROD 
IF(SEIGV(ISEF).NE.SKEEP) GO TO 37 
NSF = NSF + 1 
00 30 IPR0D=1,NPR0D 

?0 FC(NSF,IPROD) = FLEIG(N2+IPRODÎ 
?7 CONTINUE 

IF(NSF.E0,0) GO TO 39 
C 
C OUTPUT AVAILABLE AT THIS POINT -
C NPS = 
r INDEX OF THE PAIR-SPIN COMBINATION (PSC). 
r PS(P) = 
C SPIN OF THE PTH GEMINAL PAIR, 
r. NSF = 
C NUMBER OF SPIN FIGENFUNCTTQNS HAVING TOTAL SPIN 
C SKEEP AND SZ-EIGENVALUE MKEEP, FOR THE PSC WITH 
C INDEX NPS. 
C NPROn = 
r NUMBER OF GEMINAL SPIN PRODUCTS (GEMPRODS) 
C FROM WHICH THE SPIN FUNCTIONS FOR THE PSC 
C LABELLED NPS ARF CONSTRUCTED. 
C FC(I,J) = 
C COEFFICIENT OF THE JTH GEMPROD IN THE ITH 
C SPIN FUNCTION FOR THIS PSC. 
C L(J,P) = 
C CODE LABEL FOR THE TWO-ELECTRON SPIN =UNCTION 
C OCCUPIED BY THE GEMINAL PAIR 'P' IN THE JTH 
C GFMPROD, THE CODE IS AS FOLLOWS: 
C '0« MEANS (AB-BA)/DSQRT{?) 
C *3' MEANS (AA) 
r '2» MEANS (AB+BA)/DS0RT(2) 
r '1' MEANS (RB). 
C 
C 

30 IF(NSF.E0.0» NPS=NPS-1 
40 continue 

RETURN 
END 
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SUBPROGRAM 2. 

SURPNUTINE SFIGEN(NP,SFIX,MTFTX,SETGV,FLEIG,NPROD,L) 
IMPLICIT REAL*8(F), INTEGER(A-E,G-Z) 
REAL*8 OSORT 
DIMENSION SFIX(4),LABFL(6),TS(4),TM(4),S(13,4), 

1 M(13,4),L(l?,4),FLINT(ci),SETGV(13 »,IDXC13), 
2 FLEIG(I69) 

C 
( ^ * * * * * * * * * * * * * * *  
C SEIGFN RECEIVES PAIR-SPINS AND TOTAL MS FROM SSSEÎG» 
C AND FINDS SSO-EIGENFUNCTIONS SATISFYING THAT DATA. 
C 
C INPUT REQUIRED - TOTAL MS (MTFIX)T PAIR-SPINS (SFÎX 
C VECTOR), AND THE NUMBER 0F GEMINAL PAIRS (MP). 

c 
C THIS SECTION PRODUCES NPROD GEMINAL SPIN PRODUCTS OF 
C THE SPECIFIED TYPE, THE NTH ONE HAVING THE PAIR-
C FUNCTION LAPELS (L(N,I),I=3,NP), PAIR-SPINS 
C (S(N,I),I=1,NPI, AND PAIR-MS'S (M(N,I),I=1,NP). 

100 NPRHD = 0 
LLTMPL = 4**NP 
ON 200 I1=1,LLIMP] 
TMT = 0 
NMBR = IL-L 
TN = NMRR 
on 170 I?=1,NP 
PI = 4**(NP-I2) 
LAREL(I2) = TN/PT 
TN = TN - LABEL(I2)*PI 
TS(I?) = 1 
IF(LABEL(I2),E0.C) TS(I2)=0 
IF(TS(I2).NC.SFIX(I2)) GO TO 200 
TM(I2) = TS(I2)*(LABEL(I2*-2) 

!70 TMT = TMT + TM(I2) 
TF(TMT-MTFÎX'/ 200,180,200 

IPO NPROD = NPROO + Î 
ON LOO 12=1,NP 
SINPR00,T2> = TS{I2) 
M(NPR0D,I2) = TVÎ(I2I 

IOC L(NPpn0,I2) = LABEL(I?) 
200 CONTINUE 

IFFNPROD.NF,0) GO TO 2=9 
RETURN 

C 

C SSO-MATRIX BETWEEN GEMPROOS. STORED AS THE MATRIX 
C 'INT'. 
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C 
299 COUNT = 0 

00 560 I2=1,NPR0D 
DO 560 11=1,12 
INT = 0 
COUNT = COUNT + 1 
NO = 0 
00 420 13=1,NP 
IF(L(Il,I5),NE,L(I2,I3)i ND=ND+1 

4?0 CONTINUE 
IF(ND,NE.O) GO in 460 

C 
C DIAGONAL ELEMENTS 
C 

4?.0 DO 450 15=1, MP 
LRL = L(I1,Î3) 
I«=(LBL.EO.O) GO TO 650 
1 = (LBL.LER2) ND=N0+1 

450 CONTINUE 
INT = MTFIX*(MTFIX+1) + 2*N0 
GO TO ?40 

C 
C OFF-OIAGONAL ELEMENTS 
C 
660 IF(ND-2) 560,510,540 
510 DO 5?0 I?=2,MP 

IF(IA8S(M{I1,I3I-M<I2,Î3)J.GT.i) GO TO 520 
I 3 M 1  = 1 3 - 1  
00 518 I4=1TT3M1 
IF(S(I1,I3»+S(I1,T4)+S(I2,13)+S(I2,I4).NE.^} GOTO 518 
M136 = M{I1,I3) + II,14» 
IF{M134.N£,M(I2,I3)+M(I2,I4)) GO TO 518 
IF(IABS(M154),GT.l) GO TO 518 
INT = INT + 2 

51P CONTINUE 
520 CONTINUE 
540 FLINT(COUNT) = Î 
56C CONTINUE 

IF(NPROO-l) 970,600,610 
600 FLEIGCll = 2,000 

GO TO 6?0 
C 

DIAGONALIZE TH[ SSQ-MATRIX, GET SSO-EIGENFUNCTIONS 

610 CALL FIGEN(FLINT,FLFIG,NP300,l,IOX,i.OD-14) 
620 DO 6^0 11=1,NPPnD 

N1 = Il*(Il+j)/2 
FO = FLINT(Nl) 
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FD = (DSORT(L.ODO<^^OD0*FD*-1.0D0)/2.0D0 
S=IGV(N J = CD 
FD = FO - SEIGV(IÎ) 
TF(FD.GT.O.snn) SEIGVdlJ =- SEIGV(Il) + 1 

640 CONTINUE 
RETUPN 

970 STOP 
END 

SUBPROGRAM 3, 

r (USE SUBROUTINE ETGEN, LISTED IN APPENDIX E) 
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APPENDIX D; COMPUTER PROGRAM FOR THE EVALUATION OF 

COEFFICIENTS IN THE ENERGY MATRIX ELEMENTS 

BETWEEN SAAP'S 
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SUBPROGRAM 1. 

SUBROUTINE MEDHN,LABLIM,LBL,LAF,RAF,L0P,R0P,A,8,NGP, 
1FGC,TESL) 
IMPLICIT REAL*8(F,P),INTEGER{A-E,G-0,Q-Z) 
DIMENSION L6LÎ2,8),N0CC(2t30),ORB(2,30),ELOCC(2,30), 

1 N0(2),IDENT(ltI),D0RB(2,2),DEL(2,2),LIST(8),E(8,2», 
2 IRP(l,l),ISS(l,l),IRS(l,l),IST(l,l,8),IDil,8), 
3 BLANK(120),NGP(2),FGC(2,20;,TESL(2,20,4), 
4 FSC(2,1,20),SL(2,20,4),PD(1,30),PRRSSE(1,30,30), 
5 PRS(1,1}fPRRSSDC1,1,30),PRRSS(1,1 »,PRSRS(1,1), 
6 DBLS(2) 
COMMON BLANK,EPP.5l,A,B,LOCL,LOCLP,NLPROD,NRPROD,NP, 
1 TNP,TTNP,NCYC,FACT,FNORM,FPA6,FACT2,ORB,NOCC,FSC,SL 

C 
C  * * * * *  * * * * * * * * * * * * * *  *  

C CALCULATES COEFFICIENTS QF ONE- AND TWO-ELECTRON 
C INTEGRALS OCCURRING IN AN ENERGY MATRIX ELEMENT 
C BETWEEN TWO SAAP'S CONSTRUCTED FROM ORTHONORMAL 
C ORBITALS AND SERBER SPIN FUNCTIONS. 
C 
C VERSION A. 9/70. CONTAINS TESTING OUTPUT. 
C 
C 
C INPUT -
C 
C N = 
C NUMBER OF ELECTRONS (ASSUMED EVEN) 
C LBL(SIDE,EL) = 
C NUMERICAL LABEL OF ORBITAL CONTAINING ELECTRON 
C 'EL' IN LEFT SAAP (SIDE = 1) OR RIGHT SAAP 
C (SIDE = 2). 
C LABLIM = 
C THE HIGHEST NUMERICAL ORBITAL LABEL USED. 
C LAF = 
C INDEX LABELLING THE LEFT SAAP. 
C RAF = 
C INDEX LABELLING THE RIGHT SAAP. 
C A = 
C INDEX LABELLING THE LEFT SPIN FUNCTION. 
C B = 
C INDEX LABELLING THE RIGHT SPIN FUNCTION. 
C LOP = 
C INDEX LABELLING THE LEFT ORBITAL PRODUCT. 
C ROP = 
C INDEX LABELLING THE RIGHT ORBITAL PRODUCT. 
C NGP(SIOE) = 
C NUMBER OF GEMINAL SPIN PRODUCTS IN SPIN FUNC-
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C TION ON LEFT (SIDE=1) OR RIGHT (SIDE=2). 
C TESL(SIDE,GP,MU) = 
C NUMERICAL LABEL FOR THE TWO-ELECTRON SPIN FUNC-
C TIDN CONTAINING THE GEMINAL PAIR 
C IN THE GEMINAL SPIN PRODUCT 'GP', APPEARING IN 
C THE SERBER SPIN FUNCTION ASSOCIATED WITH 'SIDE'. 
C FGC(SIDE,GP) = 
C COEFFICIENT OF THE GEMINAL SPIN PRODUCT 'GP' 
C IN THE SERBER FUNCTION INDICATED BY 'SIDE'. 
C 
C 
C UPDATED VERSIONS OF THIS PROGRAM MAY BE OBTAINED 
C THROUGH THE THEORETICAL CHEMISTRY GROUP, IOWA STATE 
C UNIVERSITY, AMES, IOWA. 
C 
f  * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
C 

FACT2 = 7,0710678118654750-01 
NP = N/2 
NLPROD = NGP(l) 
NRPROD = NGP(2) 
TNP = N 
TTNP = 2**NP 
OO 10 S=l,2 
DO 10 L=1,LABLIM 

10 NOCC(S,L) = 0 
WRITE(3,11» 

11 FORMAT('i','* ************** * * * *•///) 
WRITE(3,12) N 

12 FORMATC MEOl INPUT'///' * * * *'// 
1 ' NUMBER OF ELECTRONS- ',11///) 
DO 18 SIDE=1,2 
NOGP = NGP(SIDE) 
ïF(5îDE.Ew,2i GO TO 14 
WRITE(3,12) (LBL(1,EL),EL=1,N) 

15 FORMATC LEFT SAAP'///5X,' ORBITAL PRODUCT-',9X, 
1 8(I2,2X)I 
GO TO 16 

14 WRITE(3,I5) (LBL(2,EL),EL=1,N) 
IF FORMATC RIGHT SAAP'///5X,' ORBITAL PRODUCT-',9X, 
1 8(12,2X1) 

16 WRITE(3,171 
17 F0RMAT{///5X,' SPIN EIGENFUNCTION-') 

DO 18 GP=1,N0GP 
FSC(SIDE,1,GP) = FGC(SIDE,GP) 
DO 171 MU=1,NP 

171 SL(SIDE,GP,MU) = TESL(SIDE,GP,MU) 
18 WRITE(3,19) (i=GC(SIOE,GP) ,(TESL(SIDE,GP,MU) ,MU=1,NP) ) 
19 F0RMAT(28X,D25.16,6X,4I1) 

WRITE(3,19i) 
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191 FORMAK • 1* » •* *********** * * * * * * **/// 
1* INTERMEDIATE RESULTS*///'* ********** '//// 
2/* ORBITAL DATA BLOCK') 

C 
C 
C MAKE LISTS OF LEFT AND RIGHT ORBITALS (ORB), 
C OCCUPANCIES (NCCC)t AND HIGHEST-NUMBERED ELECTRON 
C LABELS OCCUPYING ORBITALS (cLOCC). 
C 

S = 1 
20 NORB = 0 

DO 50 EL=1,N 
L = LBL(S,EL) 
SW = 0 
IF(NORB.EQ.O) GO TO 40 
DO 30 0=1,NORB 
IF(ORB(S,0).NE.L) GO TO 30 
SW = 1 

30 CONTINUE 
IF(SW.EO.O) GO TO 40 
NOCC(S,L) = NOCC(S,L) + 1 
ELOCC(S,L) = EL 
GO TO 50 

40 NORB = NORB + 1 
ORB(S,NORB) = L 
NOCC(S,L) = 1 
ELOCC(S,L) = EL 

50 CONTINUE 
NO(S) = NORB 
WRITE(3,51) S,NO(S) 

51 F0RMAT(//5X,• FOR SIDE ',12,*, THERE ARE ',12, 
1 • ORBITALS- '///SOX,' ORB NOCC ELOCC'//» 
DBLS(S; = 0 
00 52 1=1,NORB 
0 = ORB(S,I) 
IF(N0CC(S,0).EQ.2> DBLS(S) = DBLS(S) + 1 

52 WRITE(3,53) 0, NOCC(S,0 J,ELOCCCS,0) 
53 F0RMATi3iX,î2,i0X,îi,8X,Î2> 

IF(S.EQ.2) GO TO 60 
S = 2 
GO TO 20 

60 S = 1 
FNORM = DFLOAT{2**(DBLS(1)+OBLS(2))» 
FNORM = OSQRT(rNORM) 
FACT = (DFL0AT(N-1))*FNGRM 
BL = DBLSd) 

70 DIFF = 0 
SP = 3-S 
DO 100 L=1,LABLIM 
D = N0CC(S,L)-N0CC(SP,L) 
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IF(D.LF.O) GO TO 100 
DIFF = DIFF+D 
IF(DIFF.LE.2) GO TO 80 
IDENT(LOP,ROP) = 3 
WRITE(3,71) 

71 FORMAT(/////• ***** DIFF IS GREATER THAN 2- *, 
I'MEDl SETS IDENT(LOP,ROP) = 3 AND QUITS *»***') 
RETURN 

80 EL = ELOCC(S,L) 
IF(D.GT.l# GO TO 90 
00R8(S,DIFF> = L 
DEL(S,DIFF) = EL 
GO TO 100 

90 D0RB(S»1) = L 
D0RB(S,2) = L 
DEL(S,1) = EL-1 
DEL(S,2) = EL 

100 CONTINUE 
IF(DIFF.EQ,0) GO TO 110 
IF(S.E0.2) GO TO 110 
S = 2 
GO TO 70 

110 IDENT(LOP,ROP) = DIFF 
WRÎTE(3,11H DIFF 

111 F0RMAT(////5X,' ** DIFF = IOENT(LOP,ROP) = ',11) 
IF(DIFF.EQ.O) GO TO 120 
WRITE(3,112) 

112 F0RMAT(//30X,* DIFFERING ORBITALS 
1'ELECTRONS IN DIFFERING ORBITALS'/) 
DO 114 S=l,2 
WRITE(3,113) S,(DORB(S,I),1=1,DIFF) 

113 F0RMAT(20X,' SIDE •,11,lOX,I2,2X,I2) 
114 WRITE(3,il5) (OEL(S,I 1,1=1,DIFF) 
115 F0RMAT('+',72X,Î2,3X,T2» 
120 DO 130 EL=1,N 
130 LIST(EL) = LBL(1,EL) 

IFfDIFF.EO.O) GO TO 150 
DO 140 EL=1,DIFF 

140 LIST(0EL(1,EL)) = D0RB(2,EL) 
C 
C 
C CONVENTION - PERMUTATION CONVERTING RQP TO LOP IS 
C (E(l,i),E(1,2)) * * * (E(NCYC,1),E{NCYC,2)). 
C I.E., HIGHEST-NUMBERED CYCLE OPERATES FIRST ON ROP. 
C 
150 NCYC = 0 

WRTTE{3,151) 
151 FORMAT!/////' PERMUTATION BLOCK'//) 

DO 170 CHK1=1,N 
DO 160 CHK2=CHK1,N 
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IF(LBL(2,CHKI).NE.LIST(CHK2)) GO TO 160 
IF(CHK1.EQ.CHK2» GO TO 170 
NCYC = NCYC+1 
E(NCYC,1) = CHKÎ 
E(NCYC,2) = CHK2 
SAVE = LIST(CHKl) 
LIST<CHKU = LIST(CHK2) 
LIST(CHK2) = SAVE 
GO TO 170 

150 CONTINUE 
170 CONTINUE 

EPP = (-1)**NCYC 
00 1701 S=l,2 

1701 WRITE(3,172) S,(L6L(S,EL),EL=1,N) 
172 F0RMAT(20X,* ORB PROD ',I1,4X,8(2X,I2)) 

WRITE(3,1721) NCYC 
1721 F0RMAT(///20X,' NCYC = ',11) 

IF(NCYC.EQ.OJ GO TO 1731 
WRITE(3,173) {{E(CYCtS),S=1,2),CYC=1,NCYC) 

175 F0RMAT(///20X,• PERMUTATION TO ALIGN RIGHT PROD WITH* 
1» LEFT PROD- ',8('(',2I1,') M) 

1731 FPAB = FME(0,E) 
WRITE(3,174) A,B,FPAB 

174 F0RMATf'0',21X,II,',*,11,'-ELEMENT OF SPIN REP MATRI* 
I'X FOR ALIGNMENT PERMUTATION IS FPAB = ',025.16) 
WRITF(3,175) 

175 FORMATC/////» P-COEFFICIENTS AND OTHER DATA REQUIRED' 
1* BY CI'//) 
D = DIFF+1 
GO TO (200,300,400),D 

C LOP = ROP 
200 DO 210 0=1,N 
210 ID<LAF,0) = 0 

NOl = N0(1) 
WRITE(3,211J NOl 

211 F0RMAT(20X,* INSTRUCTION BLOCK 200 NOl = *,11/) 
DO 220 GP=1,NC1 
LP = ORB{l,OPi 
LOCLP = EL0CC(1,LP) 

C ÎD(LAF,RAF) IS LABEL OF ORBITAL INDEXED 'OP'. THIS 
C LABEL IS ALSO CALLED 'LP'. 

IO(LAF,OP) = LP 
WRÎTE(3,212) OP,LP 

212 FORMATOOX,' GP=«,Ii,', LP=0R8{ 1 ,0P ) = • , 12, ' -
I'CALL FP3') 

C PD(LAF,OP) IS THE COEFF OF INTEGRAL (LP/H(1)/LP) 
PD(LAF,GP» = FPi(0,LP,LP,N,E,N01Î 
WRITE(3,213) LAF,OP,TD(LAF,OP),LAF,OP,PD(LAF,OP) 

213 F0RMAT(35X,* IDC,11,',',II,') = ',I2/35X, 
1' PD(',Il-t*,',Il,') = ',025.16) 
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00 220 0=0P,N01 
L = 0RB(1,0> 
LOCL = ELOCC(ltL) 
IF(LOCL.NE.LOCLPI GO TO 214 
IF(N0CC(l»Ll.EQ.2) LOCL = LOCL-1 

C PRRSSE(LAF,0,0P), WHERE O.GE.OP, IS COEFF OF INTEGRAL 
C (L,LP/G(1,2)/L,LP), IN DIRAC NOTATION. 
214 PRRSSE(LAF,0,OP) = FP2(0,L,LP,L,LP,0,E# 

WRITE(3,221) LAF,0,OP,PRRSSE(LAF,0,OP) 
C PRRSSE(LAF,OP,0) IS COEFF OF (L,LP/G(1,2)/LP,Li. 

PRRSSE(LAF,0P,0) = FP2( n ,L,LP,L,LP,l,E) 
220 WRITE(3,22i; LAF,0P,0,PRRSSE(LAF,0P,0) 
221 F0RMAT(35X,' PRRSSE(',I1,',*,I1,',',I1,') = ',025.16) 

RETURN 
C 
C LOP AND POP DIFFER BY ONE ORBITAL, VIZ. 
C IRS(LAF,RAF) = L IN LO», 
C IRS(RAF,LAFÎ = R IN ROP. 
?C0 L = D0RB(1,1) 

IRS(LAF,RAF) = L 
R = D0RB(2,i) 
IRS(RAF,LAF) = R 
LOCL = DELfl,!) 
NOl = N0(1) 
N02 = N0(2) 
1 = 0 
00 330 01=1,NOl 
LP = 0RP(1,01) 
on 310 02=1,N02 
IF(LP.E0.0RB(2,02)) GO TO 320 

310 CONTINUE 
GO TO 330 

320 I = 1+1 
C IST{LAF,RAF,I) = iTH ORBITAL COMMON TO LOP AND ROP, 
C VIZ., LP. 

IST{LAF,RAF,I) = LP 
350 CONTINUE 

NI = I 
C PRS{LAF,RAF) = COEFF OF (L/H(1)/RI. 
336 PRS(LAF,RAF$ = FPi(1,L,R,N,E,N01) 

DO 340 1=1,NI 
LP = IST{LAF,RAF, n  
LOCLP = EL0CC(1,LPJ 
IF(LGCLP.NE.LOCL) GO TO 337 
IF(N0CC(1,LP).E0.2) L0CLP=L0CLP-1 

C PRRSSD(LAF,RAF,Î> = COEFF OF (L,LP/G(1,2)/R,LP), 
337 PRRSSD{LAF,RAF,IJ = FP2(1,L,LP,R,LP,0,E) 

C PRRSSD{RAF,LAF,Ii = COEFF OF (L,LP/G{1,2>/LP,RJ. 
340 PRRSSO(PAF,LAF,I) = FP2(1,L,LP,R,LP,1,E» 

RETURN 
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C 
C LOP AND ROP DIFFER BY TWO ORBÎTALS, VIZ., 
C IRR(LAF,R&F) = L AND ISS(LAF,RAF) = LP IN LOP, 
C IRR(RAF,LAFJ = R AND ISS(RAF,LAF) = RP IN ROP. 
400 LP = D0PB(I,2) 

ISS(LAF,RAF) = LP 
WRITE(3,410) LAF,RAF,LP 

^10 F0RMAT(35X,* ISS(',I1,',',I1,') = ',12) 
RP = DORB(2,2) 
ISS(PAF,LAF) = RP 
WRITE(3,4!0) RAF,LAF,RP 
L = D0RB(I,1) 
IRR(LAF,RAF) = L 
WRITE(3,420) LAF,RAF,L 

420 F0RMAT(35X,* IRR(',I1,',',I1,** = ',12) 
R = D0R8(2,1) 
IRR(RAF,LAF) = R 
WRITE(3,420) RAF,LAF,R 
LOCL = DEL(1,1> 
LOCLP = D£L(1,2) 

C PRRSS(LAF,RAF) = COEFF OF (L,LP/G(1,2)/R,RP). 
PRRSS{LAF,RAF> = FP2(2,L,LP,R,RP,G,E) 
WRITE(3,430) LAF,RAF,PRRSS(LAF,RAF» 

430 F0RMAT(35X,' ORRSS(»,I1,',•,II,•} = ',025.16) 
C PRSRS(LAF,RAF) = COEFF OF <L,LP/G(1,2)/RP,R)• 

PRSRS(LAF,RAF) = FP2(2,L,LP,R,RP,1,E) 
WRITE(3,440) LAF,RAF,PRSRS(LAF,RAF) 

440 F0RMAT<35X,* PRSRS(',Ii,',',II,•) = ',025.161 
RETURN 

C 
END 

SUBPROGRAM 2. 

DOUBLE PRECISION FUNCTION FP1(0IFF,L,R,N,P,N01 I 
IMPLICIT REAL*8(F),INTEGER(A-E,G-Z) 
DIMENSION 0RB(2,50 5,P{8,2},NOCC(2,30),BLANK(120) 
COMMON BLANK,EPP,PL,A,B,LOCL,LOCLP,NLPROD,NRPROO,NP, 

1 TNP,TTNP,NCYC,FACT,FNDRM,FPA3,FACT2,0RB,N0CC 
c  
C CALCULATES COEFFICIENT OF ONE-ELECTRON INTEGRAL 
C (L/H{l)/R), LOP AND ROP DIFFER BY DIFF ORBITALS. 
C 

F = l.ODO 
0 = L 
IF{OIFF,EQ.O) GO TO 25 
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F = 2.0DO 
0 = P 

25 FPl = O.ODO 
IF(N0CC(1,L).NE.2) GO TO 30 
FPl = 4.0D0 * FPI(L,L,G,L,P,0)/F 

30 DO 50 1=1,NOl 
LP = 0RB(1,Î) 
IF(LP.EO.L) GO TO 50 
FD = l.ODO 
IF(DIFF.EO.O) GO TO 40 
IFCLP.EO.RJ FD = 2.000 

^0 FPl = FPl + FD*FPI(L,LP,0,LP,P,0) 
50 CONTINUE 
60 FPl = FPl/FACT 

RETURN 
END 

SUBPROGRAM 3. 

DOUBLE PRECISION FUNCTION FP2(0%FF,L,LP,R,RP,SW,P) 
IMPLICIT REAL*8(F), INTEGER(A-EtG-Z) 
DIMENSION P(8t2),ORB(2,30),NOCC(2,30),BLANK(120) 
COMMON BLANK,FPP,PL,A,B,LOCL,LOCLP,NLPROD,NRPROD,NP, 

1 TNP,TTNP,NCYC,FACT,FN0RM,FPA3,FACT2,ORB,NOCC 
C 
C CALCULATES COEFF OF INTEGRAL (L,LP/G(1,2)/R,RP) IF 
C SW=0, OR OF (L,LP/G(1,2)/RP,R) IF SW=1. LOP AND ROP 
C DIFFER BY DIFF CR6ITALS. 
C 

FC = l.ODO 
C 
300 ÎF(L.EO.LP) GO TO 310 

IF(R.EQ.RP! GO TO 325 
GO TO 350 

310 IF(N0CC(1,L).EQ.2) GO TO 325 
FSTR = O.ODO 
GO TO 375 

325 FC = 2.0D0 
IF(SW.EO.l) GO TO 375 

350 FSTR = FC * FPK L,LP,R, RP, P,SW ) / FNORM 
375 FP2 = FSTR 

RETURN 
END 
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SUBPROGRAM 4. 

DOUBLE PRECISION FUNCTION FPI(L,LP,R,RP,P,SW) 
IMPLICIT REAL*8(F), INTEGER(A-E,G-2) 
DIMENSION N0CC(2,3O),P(8,2 I,0RB(2,30),BLANK(120) 
COMMON 8LANK,EPPtPL,A,BTLOCL,LOCLPtNLPROD,NRPRODtNP, 

1 TNP,TTNP,NCYC,FACT,FNORM,FPAB,FACT2 » ORB,NOCC 
C 
C CALCULATES QUANTITY 
C (2**(PRS(L,LP)+PRS(R,RPI+PRS(L0PM))) * EPP * 
C * FME(SW,P,A,B) 
C WHERE 
C PRS(L,LP) = NO, DIFFERENT OOUBLY-OCC ORBITALS REPRE-
C SENTEO BY L AND LP (IF L=LP, THIS NUMBER IS ZERO), 
C PRS(P,RP) = SIMILAR, 
C PRS(LOPM) = NO. OF DOUBLY-OCC ORBITALS IN LEFT ORB 
C PROD AFTER L AND LP ARE REMOVED, 
C EPP = +1 OR -I IF P IS AN EVEN OR ODD PERMUTATION, 
C FME(SW,P,A,B1 = (A,B)-ELEMENT OF SPIN REP MATRIX rO^ 
C PERM IF SW=0, OR FOR PERM (I,J)*P IF SW=1 (WHERE 
C I AND J ARE THE ELECTRONS OCCUPYING L AND LP IN LEFT 
C ORB PROD). 
C 

WRITE(3,1) L,LP,R,RP,SW 
3 F0RMAT(80X,* FPI(»,12,413,•)-•» 

FMATEL = FPAB 
IF(SW.EO.O) GO TO 10 
FMATEL = FME(2,P) 

10 PWR = PL 
IF(L.cQ.LP) PWR = PL-1 
PRRP = N0CC(2,R) + N0CC(2,RP) - 2 
IF(R.EO.RP) PRRP=0 
FC = DFL0AT((2**(PWR+PRRP))*EPP) 
FPI = FC * FMATEL * (DFL0AT((-1)**SW)) 
WRITE(3,19) PWR,PRRP,SW,EPP,FMATEL 

19 FORMAT(«OX,* 2**(',I2,' +',I2,' > » (-1)»*',I1, 
1 • * ',12,' * SD13.6) 
RETURN 
END 
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SUBPROGRAM 5. 

DOUBLE PRECISION FUNCTION FME(SW,EI 
IMPLICIT REAL*8(FK INTEGER(A-E,G-Z) 
DIMENSION FSC(2,1,20),L(2,20,4),T(4),M(4),SL(8), 

1 SEP(16),F(8,2),FCOEFF(16),NOCC(2,30),ORB(2,30), 
2 8LANK{120) 
COMMON BLANK,EPP,PL,A,8,L0CL,L0CLP,NLPR0D,NRPR0D,NP, 
1 TNP tTTNP,NCYC,FACT,FNOP M,F PAB,FACT2,ORB,NOCC,FSC,L 

C 
C CALCULATES (A,B)-ELEMENT OF SPIN REP MATRIX FOR PERM 
C 'P' IF SW=0, FOR PERM (I,J)*P IF SW=1, WHERE I AND J 
C ARE THE ELECTRONS OCCUPYING ORBITALS L AND LP IN THE 
C LEFT ORB PROD. 
C 

FME = 0.000 
DO 400 LPR0D=1,NLPR0D 
DO 400 RPR0D=1,NPPR0D 
FPMA7 = 0.000 
IF(NCYC.NE.O) GO TO 305 
IF(SW.E0.1» GO TO 305 

C WHEN NCYC=0, PERMUTATION IS TAKEN TO BE THE IDENTITY, 
C UF SW=0. 

DO 301 13=1,NP 
IF(L(1,LPR0D,I3).NE.L(2,RPR0D,I3»» GO TO 370 

301 CONTINUE 
FPMAT = l.ODO 
GO TO 370 

C 
305 DO 365 SIDE=1,2 

PROD = LPROD 
IF(SIOE.EO.l) GO TO 306 
PROD = RPROD 

306 COUNT = 0 
C FOR FIXED SIDE (LEFT OR RIGHT) AND GEMPROD, SWEEP ALL 
C SEPRODS AND CONVERT SUITABLE DECLABELS TO BINLABELS 

DO 360 13=1,TTNP 
I 3 M  = 1 3 - 1  
DO 310 14=1,NP 
PI = 2**(NP-I4) 
T{14) = I3M/PÎ + 1 
IF(L(SIDE,PROD,I4).NE.O; GO TO 307 
S = 0 
GO TO 308 

307 S = 1 
308 M(I4) = S*(L(SIDE,PR0D,I4)-2) 

IF(T{ I4).E0.1) GO TO 33 0 
C SKIP SEPROD LABELS WH ARE NOT ASSOCIATED WITH THE 
C GIVEN GEMPROD 
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IF(M( I4).NE.O» GO TO 360 
310 I3M = I3M - T(I4)*PI + PI 

COUNT SEPRODS ASSOCIATED WITH GIVEN GEMPROD 
COUNT = COUNT + 1 
FOP EACH SEPROD KEPT, GENERATE THE SINGLE-ELECTRON 
SPIN FUNCTION LABELS (SL'S) AND THE COEFFICIENT (FC 
FC = l.CDO 
DO 330 14=1,NP 
TI4 = 2*14 
TÎ4M1 = TI4 - 1 
IF{M< I4).NE.0> GO TO 315 
IF(T(I4).NE.2) GO TO 325 
SL(TI4M1) = 0 
SL(TI4I = 1 
FC = FC*FACT2 
IF(L(SIDE,PR0D,I4».E0.2) GO TO 330 

• FC = -FC 
GO TO 330 

315 SL(TI4M1) = 1 
IF(L(SIDE,PR0D,I4).E0,3) GO TO 320 
SL(TI4H1) = 0 

320 SL(TI4) = SL(TI4M1) 
GO TO 330 

325 SL{TI4Mi) = 1 
SL(TI4) = 0 
FC = FC*FACT2 

330 CONTINUE 
IF(SIDE.EO.l) GO TO 340 
IF SIDE = 2, PERMUTE THE SL'S 
IF(NCYC.EO.O) GO TO 337 
DO 336 K=1,NCYC 
I = NCYC + 1 - K 
TEMP = SL(E(I,2)) 
SL(E(I,2)) = SL(E(I,1)) 

336 SL(E(1,1)» = TEMP 
337 IF(SW.EQ.01 GO TO 340 

TEMP = SULOCL) 
SL(LOCL) = SL(LOCLP) 
SL(LOCLP) = TEMP 

340 SEPROD = 0 
DO 345 14=1,TNP 

3^5 SEPROD = SEPROD + SL(I4)*(10**(TNP-I4)) 
IF SîDE=l (LEFT), STORE SEPROD AS SEP(COUNT), FC AS 
FCOEFF(COUNT) 
IFfSIDE.E0.2) GO TO 350 
SEP(COUNT) = SEPROD 
FCGEFP(COUNT) = FC 
GO TO 360 

350 CONTINUE 
DO 355 14=1,NSPL 
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IF{SEPROO.NE,SEP( I 4 n  GO TO 355 
FPMAT = FPMAT + FC*FCOEFF( 16. ) 

355 CONTINUE 
360 CONTINUE 

IF SîDE=î, STORE NUMBER OF SEPROOS ASSOCIATED WITH 
LEFT GEMPROD 
IFfSIDE.F0.2) GO TO 365 
NSPL = COUNT 

365 CONTINUE 
370 FME = FME + FSC(1,A,LPR0D)*FSC(2,B,RPR0D)*FPMAT 
400 CONTINUE 

RETURN 
END 

SAMPLE DATA CARDS 

4 0 1 2 3 4 
2 3 

0,57735026918962570 00 
-0,57735026918962570 00 
0.57735026912962570 00 
4 0 3 12 4 
2 3 

0.57735026918962570 00 
-0.5773502691896257D 00 
0.5773502691896257D 00 

1 
2 
3 

3 
2 
1 

1 
2 
3 

3 
2 
1 
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APPENDIX E; COMPUTER PROGRAM FOR GENERATING 

SIMULTANEOUS EIGENFUNCTIONS OF SPIN AND ORBITAL 

ANGULAR MOMENTA AS LINEAR COMBINATIONS OF SAAP'S 
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SUBPROGRAM 1. 

IMPLICIT REAL*8(F),INTEGER(A-EtG-Z) 
REAL*8 OSORT 
DIMENSION N0N(8),L(20,8),ML(20,8),LL(20,8), 

I NSPR0D(5,16),SL(2,13,4),FSC(2,13,13),NSEF(5,16), 
? MS(2,13,4),PRS(5,20),N0CC{111),PL(5,20),NPS(5), 
3 FLINT(127S),NLP(5),L0N(8),FLEIG(2500),BLANK(4), 
4 TDX(50;,PSC0DE(5,16),M(8),SL0ISK(5,16,13,4), 
5 cSCnSK(5,l6,13,13) 
COMMON FSC,SL,M$,ML,L,LL,NSPROD,N,TTNP,PL 

C 

c  
c  LSE2 
C 
c THIS PROGRAM CONSTRUCTS SIMULTANEOUS EIGENFUNCTIONS 
C OF LSO. LZ, SSO, AND SZ, THESE EIGENFUNCTIONS BEING 
C LINEAR COMBINATIONS OF SAAP'S CONTAINING A SPACE PRO-
C DUCT AND A SPIN EIGENFUNCTION, THE SPIN FUNCTIONS 
C SPAN A SERBER-TYPE REPRESENTATION OF THE SYMMETRIC 
C GROUP. 
C 
C INPUT IS THE NUMBER OF ELECTRONS (N), TOTAL S <ST1, 
C TOT&L MS (MSTU TOTAL L (LT), TOTAL ML (MLT), HIGHEST 
C LON OCCURRING (HIL), HIGHEST NON OCCURRING (HINW 
C ÂNO THE NUMBER OF CONFIGURATIONS (NCGNF). N IS 
C ASSUMED TO BE EVEN. 
C 
r FOR EACH configuration, THE PROGRAM NEEDS THE NUMBER 
C OF ORBITALS REQUIRED TO SPECIFY THAT CONFIGURATION 
C (NMNPI AND THE LIST OF NON»S AND LON*S, 
C 
C NOTE TO THE USER - THIS DECK IS DIMENSIONED TO 
C HANDLE MOST CASES OF INTEREST WITH UP TO 8 ELECTRONS, 
C CERTAIN CASES MAY REQUIRE HIGHER DIMENSIONS. THE 
C ARRAYS 'FSCDSK' AND 'SLDISK* SHOULD 8E PLACED IN EX-
C TERNAL STORAGE, THEY MAY THEMSELVES BE STORED IN BULK 
C CORE, OR THEIR FUNCTION MAY BE PERFORMED BY TAPE OR 
C DISK. STATEMENTS INVOLVING THESE ARRAYS ARE INDI-
C CATED BY 'CTEMP* MARKERS. 
C 
C UPDATED VERSIONS OF THIS PROGRAM MAY BE OBTAINED 
C THROUGH THE THEORETICAL CHEMISTRY GROUP, IOWA STATE 
C UNIVERSITY, AMES, IOWA, 
C 

* * * * * * * * * * * * * * *  

C 
C 
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C 
C FOLLOWING IS BLOCK TO SELECT ORBITAL PRODUCTS FOR 
C GIVEN MLT, INDIVIDUAL LON'S, SUBJECT TO CONDITIONS 
C THAT DOUBLES ARE LISTED FIRST, THAT DOUBLES ARE 
C LISTED WITH ASCENDING LABELS, AND THAT SINGLES ARE 
C LISTED WITH ASCENDING LABELS. 
C 

READ(1,901) N,ST,MST,LT,MLT,HIL,HIN,NCONF 
901 F0RMAT{8I5) 

WRITE(3,902 I N,HIN,HIL,ST,MST,LT,MLT,NC0NF 
902 FORMAT!//////////' PROBLEM DESCRIPTION-»//lOX,12 , 

1 » ELECTRONS, HIGHEST NQN = ,11,', HIGHEST LOM = 
2 T1//25X,'ST = ',I1,5X,'MST = ',I2/25X,*LT = ',12, 
? 6X,'MLT = •,I3//26X,I1,• CONFIGURATIONS') 
N02 = N/2 
TTNP = 2 ND2 
PACT2 = 7,0710678118654750-01 
HILPl = MIL + 1 
HM = 2*HIL + 1 
LMMAX = fHIL+l)**2 
LARLIM = HIN*(HIN-l)*(2fHIN-l)/6 + LMMAX 
NPL = n 

• SWFEP CONFIGURATIONS 
DO 113 C=1,NC0NF 
COWNT = 0 
NRAP = 0 
NLPRnO = 0 
READ(1,9CG) NMNP,(N0N(MU),L0N(MU),MU=1,NMNP) 

900 F0RMAT(I2,2X,20(211,ÎX)) 
WRITE(3,903) C,(NON(MU),LON(MU),MU=1,NMNP) 

°0? FORMAT!//////////•1 #*****************$********// 
I ' CONFIGURATION ',11,'- ',14(211,IX)) 
WRITE(3,904) 

904 FORMAT(/////) 
NP = N - NMNP 
NPPl = NP + 1 
NPP2 = NPPl + 1 
Njo = NMNP - NP 
LTM = HM ** NMNP 

SWFEP DECIMAL LABELS FOR SPACE PRODUCTS, KEEPING 
ONLY THOSE WHICH SUIT THE INPUT DATA FOR THE GIVEN 
CONFIGURATION 
DO 4 MU=1,NMNP 

/i. M(MU) = - LON(MU) 
U = 3 
V = 2 

6 NLPROO = NLPROD + 1 
DO 8 0RB=1,LA8LIM 
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8 NOCC(ORB) = 0 
MSUM = 0 
00 10 MU=ltNMNP 
EM = M{MU> 
ML(NLPROD»MU) = EM 
IF(IA8S(EM).GT.L0N(MU)» GO TO 40 
ÎNC = 1 
IF(MU.LE.NP! INC=2 

10 MSUM = MSUM + INC*EM 
TF( MSUM.NE-MLT! GO TO 40 
00 30 MU=1,NMNP 
FN = NQN(MU) 
EL = LON(MU) 
L(NLPPOD,MU) = EL 
LABEL = EN*(EN-l)*(2*EN-l)/6 + 5L*(EL+1) + 1 

1 + HL(NLPROD,MU) 
LL<NLPROD,MU) = LABEL 
IF(MU.EO. I ) GO TO 20 
IF(MU.EO.NPPl) GO TO 20 
MUMl = MU - 1 
IF(LL(NLPROD,MU).LT.LL(NLPROD,MUMl)) GO TO 40 

?C INC = 1 
IF(MU.LE.NP) INC = 2 
NL = NOCC(LABEL) 
NL = NL + INC 
IF(NL.GT.2) GO TO 40 
NnCC(LABEL) = NL 

30 CONTINUE 
GO TO 50 

40 NLPROD = NLPROD-1 
50 TF(M(U).EO.LON(U)) GO TO 501 

M(IJ) = M(U) + 1 
GO TO 6 

5G1 U = U + 1 
IF(U.FO.V) GO TO 502 
IF( V(U». EO,LQN(Un GO TO 501 
W = U 
GO TO 504 

=;02 ÎF(M(V». NE.LQN{V) > GO TO 503 
IF(V.EO.NMNP) GO TO 506 
V = V + 1 
GO TO 502 

50? W = V 
504 U = 1 

WMI = W - 1 
DO 505 MU=1,WM1 

505 M(MU) = -LON(MU) 
M{W) = M{W) + 1 
GO TO 6 

506 NLP(C) = NLPROD 
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TF(NLPROD.NE.OI GO TO 52 
WP%TE(3,1014) 

1014 FORMATC////' THERE ARE NO SUITABLE ORBITAL PRODUCTS 
1 'DATA ARE INCONSISTENT»» 
GO TO 113 

52 MULIM = NMNP 
C 
C FOR EACH CONFIGURATION, SWEEP ALL SUITABLE ORBITAL 
C PRODUCTS, CONVERT THEM TO STANDARD FORM 

DO 95 I=1,NLPR0D 
C SHI«=T BLOCK 

NMNP = MULIM 
NP = N - NMNP 
MTP = NMNP - NP 
IF(NPP2<GT,NMNP) GO TO 71 
DO 68 MU=NPP2,MULTM 
IFfMU.GT.NMNP) GO TO 71 
MUMI = MU - I 
IF(LL(I,MU).NE«LL(I,MUM1)J GO TO 68 
NMNP - NMNP - 1 
SAVE] = LL{I,MUMI) 
SAVE2 = NP + 1 
IF(NP.EO.O) GO TO 56 
DO 53 NU=1,NP 
IF(LL(I,NU).LE.SAVE1) GO tq 53 
SAVE2 = NU 
GO TO 56 

5^ CONTINUE 
=6 XILIM = MUMI - SAVE2 

IFfXiLIM.EQ. 0» GO TO 62 
DO 59 XI=i,XILIM 
OM = MU - XT 

59 LL(I,OM) = LL(Î,0M-1) 
LL(I,SAVE2) = SAVEl 

62 IF(NMNP.LT.MU) GO TO 67" 
DO 65 XI=MU,NMNP 

65 LL<I,XI) = LL(I,XI+I) 
67 NP=N-NMNP 

NTP = NMNP - NP 
68 CONTINUE 
7% PRS{C,I) = NP 

C END SHIFT BLOCK 
GO TO 81 

C 
C UNPACK MU SUBSCRIPT 

IF(NP»EO.O) GO TO 81 
DO 80 MU=1,MMNP 
MUMI = MU - 1 
J = 0 
K = NMNP - MUMI 
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0 = MUMl - NTP 
IF(D.GT.O) J=D 
NEW = N-MUMl-J 
NEWl = NEW - î 
LABEL = LL(Î»K) 
LL(ItNEW) = LABEL 
LL(T,NEWÏ)= LABEL 
CHKMl = 0 
FN = 1 

72 CHK = EN*(EN+1)*(2*EN+1)/6 
TF(CHK.GE.LABEL) GO TO 725 
CHKMl = CHK 
EN = EN + 1 
GO TO 12 

7.?5 NQN(NEW) = EN 
NON(NEWl) = EN 
LABEL = LABEL - CHKMl 
EL = 0 

7? CHK = (EL+1)**2 
TF(CHK,GE.LABEL) GO TO 735 
EL = EL+1 
GO TO 73 

735 LCI,NEW) = EL 
L{T»N=W!) = EL 
EM = LABEL - EL*(EL+1* - 1 
ML(I»NEW) = EM 
ML(I,NEW1) = EM 

90 CONTINUE 
C END MU EXPANSION BLOCK 
C 
C GET SPIN EIGENFUNCTIONS TO GO WITH ITH SPACE PRODUCT 
C FOR CONFIGURATION C 

81 CLTM = C 
NPL = NPL + 1 
PL(C,I) = NPL 
SW = 0 
IF(I.NE.l) GO TO R3 
IFfCLIM.EO.l) GO TO 88 
CLÎM = C - 1 

83 DO 87 CC=1,CLIM 
JLIM = NLP(CC) 
IF(CC.FO.C) JLIM = I-l 
DO 86 J=3,JLIM 
IF(SW.EO.l) GO TO 84 
IF(PRS(C,I).NE.PRS(CC,J)) GO TO 86 
PL(C,II = PL(CC,J) 
NPL = NPL - 1 
SW = ? 
CONF = CC 
PROD = J 
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GO TO 880 
IF(PRS(CC,J».GE.PRS(C,I )» GO Tl? 86 
CONF = CC 
PROD = J 
GO TO 880 

86 CONTINUE 
87 CONTINUE 

IF(SW.NE.C) GO TO 88 
SW = 1 
GO TO 83 

88 CALL SS0EIG(ND2,NP,ST,MST,C,I,NPL,NPRSPtNSPR0D,NSEF, 
1 PSCDOEtFLEIG,FSCOSK,SLDISKI 
NPS(NPL) = NPRSP 
GO TO 89 

C NPRSP WILL BE ZERO IFF THERE ARE NO SUITABLE SPIN 
C EIGENFUNCTIONS TO GO WITH THE CURRENT ORB PROD 

880 ORGL = PL(CONF,PROD) 
PLI = PL(C,I) 
NPRSP = NPS(PRGL) 
NDO = PRS(C,I ) 
CHK = 2**(ND2-ND0) 
COUNT = 0 
DO 881 PSC=I,NPRSP 
IF(SW.F0.2) GO TO 88C0 
IF{PSCODE(PRGL.PSC).GE.CHK) GO TO 881 

88C0 COUNT = COUNT + 1 
NSF = NSEF(PRGL,PSC1 
NSP = NSPROD(PRGL,PSC) 
NSPROD(NPL,COUNT) = NSP 
NSEF(NPL,COUNT) = NSF 

CTEMP 
DO 8802 ISP=1,NSP 
on 8801 SEF=1,NSF 

8801 FSCnSKIPLI,COUNT,SEF,ISP) = FSCDSK(PRGL,PSC,SEF,ISPi 
00 8802 PR=1,ND2 

8802 SLDISK(PLI,COUNT,ISPtPR) = SLDISK(PRGL,PSC,ISP,PR) 
CTFMP 

881 CONTINUE 
TF(SW,E0,2) GO TO 89 
NPS(NPL) = COUNT 

C 
C FORM LSO-MATRIX (UPPER TRIANGLE) FOR CURRENT CONFIG 

89 RPL = PL(C,I) 
NRPS = NPSCRPL) 
IFCNRPS.E0»0) GO TO 95 
DO 94 RPS=1,NRPS 
NSP = NSPROD(PPLtRPS) 
NRSEF = NSEF(RPL»RPSJ 
DO 93 RSEF=1,NRSEF 
NRAF = NRAF + 1 
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SW = 0 
CTEMP 

DO 8901 ISP=1,NSP 
FSC(2,RSEF,ISP» = FSCDSK(RPL,P.PS»RSEF,ISP» 
00 8901 PP=I,ND? 

8902 SL(2,ISP,PR) = SLOISK(RPLtRPS,ISP,PR) 
CTEMP 

MU = 1 
WRITF(?,891> NRAF 

891 F0RMAT(////5X,• SAAP NUMBER •,Î3////20X,•SPACE 
1 'PRODUCT*,48X,'SPIN EIGENFUNCTI0N'//23X,'N L M*, 
2 40X,'C0EFFICIENT',15X,'SEMINAL SPIN PRODUCT'///) 

892 I«=(MU.GT.N) GO TO 894 
EL = L(I,MU) 
EM = ML(I,MU) 
PN = NONtMU» 
WRTTE(3,893) EN,FL,EM 

893 F0RMAT('+*,22X,3(I2)) 
SW = 1 

894 IF(MU.GT.NSP) GO TO 896 
WRITE(3,895) FSC(2,RSEF,MU),(SL(2,MU,PR),PR=1,ND2) 

=95 FORMATC•+••65X,F19.16tl6X,7IlI 
SW = 1. 

«96 IF(SW.EO.O) GO TO 898 
SW = 0 
WRITE(3,897» 

8^7 FORMAT(/) 
MIJ = MU+1 
GO TO 892 

898 WRITE(3,899) 
899 FORMAT(/////) 

NLAF = C 
no 91 LPR0D=1,NLPR0D 
LOL = PL(C,LPROD) 
NLPS = NPS(LPL) 
TFfNLPS. EO.OI GO TO 91 
00 90 LPS=1,NLPS 
NLSP = NSPRCD(LPL,LPS) 
NLSEF = NSEFfLPL.LPSI 
DO 90 LSEF=1,NLSEF 

CTEMP 
00 8991 ISP=1,NLSP 
FSC(1,LSEF,ISP) = FSCDSK(LPL,LPS,LSEF,ISP) 
DO 8991 PR=1,ND2 

8C9Î SL(1,ISP,PR) = SLD!SK(LPL,LPS,TSP,PR) 
CTFMP 

NLAF = NLAF + 1 
COWNT = COWNT + 1 
FLTNT(COWNT) ̂  FLSOME(C,LPROD,LPS•LSEF,C,T,RPS»RSEF, 

1 N,MLT,PRS,LABLIM) 
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TF(NLAF.EO.NRAF) GO TO 93 
90 CONTINUE 
91 CONTINUE 

C 
93 CONTINUE 
9^ CONTINUE 
95 CONTINUE 

C (95 IS END OF I-LOOP) 
C 
C 
r DIAGONALIZF THE LSQ MATRIX 

IF(NRAF.GT.J ) GO TO ICI 
FLFIG(î) = l.OOC 
GO TO 104 

101 CALL EIGEN(FLINT,FLEIG»NRAF,l,IDXtl.OD-l^J 
104 NLEF = 0 

WRITE{3»1012) C,LT,MLT,ST,MST 
1012 FORMATCICONFIGURATION ',11,'. LIST OF SIMULTANEOUS', 

1 • EIGENFUN'CTIONS OP ISO, LZ, SSO, AND SZ, WITH»/ 
? 18X,'IT = ',I1,7X,'MLT = ',I1,7X,'ST = ',I1,7X, 
3 'MST = •,I1/////4X,'EF NO.',22X,'COEFFICIENT*, 
4 15X,'SAAP'///) 
DO 110 T1=1,NRAF 
N1 = Il*(Il+l)/2 
N2 = (I1-1)*NRAF 
FD = FLINTCNlJ 
FD = (nSORT(l.ODC+4.0D0*FD)-l,OD0)/2.ODO 
LrlGV = FD 
FD = FD-LEIGV 
IF(FD.GT.CU5) LEIGV = LEIGV + 1 
IC(LEIGV,NE.LT) GO TO 110 
NLFF = NLFF + 1 
WRITF(3,1013) NLFF,(FLEIG{N2+I2>,12,12=1,NRAF} 

1013 FOPMAT(//////'0',4X,I2,50(17X,023.16,10X,'SAAP(',I2, 
1 '1'/7X)) 
WRITE(3,i017J LEIGV 

1017 FORMAT('+:,75X,'(C0RRESP. TO L-EIGENVALUE OF ",12,')') 
ilO CONTINUE 

IF(NLEF.NE.O) GO TO 113 
WRITE(3,1101) LT 

llCl F0RMAT(//////'0THE EIGENVALUE LT = ',12, 
1 'DOES NOT OCCUR FOR THIS CONFIGURATION») 

C 
113 CONTINUE 

C (113 IS END OF C-LOOP) 
C 
C 

RETURN 
END 
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SUBPROGRAM 2. 

SUBROUTINE SSOEIG(NP,NDO,SKEEP,MKEEP,C,ORBPRDtPRGLt 
1 NPS,NGP,NSEF,PSCOOE,FLEIG,FSCOSK,SLDTSKi 
IMPLICIT REAL*8(F), INTEGER(A-E»G-Z) 
DIMENSION PS(4),NGP(5,16),L(2,13,4),M(2,13,4), 

1 SEIGV(13l,FLFIG(2500),NSEF(5,16),FC(2,13,13;, 
2 PSCOOE(5,16),FSCDSK(5,16,13,13),SLDISK(5,16,13,41 
COMMON FC,L,M 

C 
c 
C SSOEIG CINDS EIGENPUNCTIQNS OF S»*2 AND SZ FOR THE 
C GIVEN PAIRING LABEL 'PRGL'. 
C 
C 

FACT2 = 7.0710678118654750-01 
TNP = NP + NP 
TTNP = 2**NP 

5 MAGMT = IABS(MKEEP) 
NPS = 0 

C SWEEP DECIMAL REPS OF PS'S 
DO 40 DPS=l,TTNP 
QPSMi = DPS - 2 
TD = DPSMl 

r CONVERT DEC REP TO PS'S 
PSSUM = 0 
00 10 P=1,NP 
PI = 2 ** (NP-P) 
PSP = TO/PI 
IF(P.GT.NDO) GO TO 9 
IF(PSP.NE.O) GO TO 40 

9 PS(P) = PSP 
TD = TO - PSP*PI 

10 PSSUM = PSSUM + PSP 
C KEEP ONLY PS COMBINATIONS APPROPRIATE TO MKEEP 

IF(PSSUM.LT.MAGMT) GO TO 40 
NPS = NPS + I 

C GET SSO-EIGENFUNCTIONS CORRESPONDING TO SZ-EIGENVÛLUE 
C •MKEEP*« AND GIVEN PS'S 

CALL SEIGEN(NP,NPS,PS,MKEEP,SEIGV,FLEIG,NPROO,PRGLI 
C NGP(PRGL,I) IS NO. OF GEMPRODS ASSOCIATED WITH PSC 
C 'I' AND PAIRING LABEL 'PRGL' 

NGP(PRGL,NPS» = NPROD 
PSCODE(PRGL,NPS) = DPSMl 
IFCNPROD. NE. 0» GO TO 1== 
NPS = NPS - 1 
GO TO 40 

C NSEF(PRGL,I) IS NO, OF SSO-EIGENFUNCTIONS WITH GIVEN 
C EIGENVALUE WHICH ARISE FROM ITH PSC FOR PRGL 
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15 NSF = 0 
DO 37 ISEF=~,NPROD 
N2 = (ÎSEF-1}*NPROD 
IF(SEIGV( ISEFi.NE.SKFEP) GO TO 37 
NSF = NSF + 1 
DO 30 IPR00=1,NPPOD 

CTEMP 
3C FSCOSK{PRGL,NPS»NSF,IPROD) = FLEIG(N2+IPROO) 

CTEMP 
37 CONTINUE 

NSEF(PRGL,NPS) = NSF 
IF(NSF.EO.C) GO TO 39 

CTEMP 
DO 38 IPRDD=1,MPROO 
DO 38 P=1,NP 

38 SLDISK(PRGL,NPS,IPROD,P) = L(1,IPR0D,P) 
CTFMp 

39 WRITE(3,410J NSF 
410 FORMATdOOX, • AND NSEF = ',12) 

IF(NSF.EO.O) NP$=NPS-l 
4C CONTINUE 

RETURN 
END 

SUBPROGRAM 3. 

SUBROUTINE SEIGEN(NP,NPS,SFIX,MTFIX,SEIGV,FLEÎG, 
1 NPROD.PRGL) 
IMPLICIT REAL*8(F), INTEGER(A-E,G-Z) 
REAL*8 DSORT 
DIMENSION SFIX(4),LABEL(4)tTS(4),TM{4),S(13,4), 

1 M(2,13,4),L(2,13,4>,FLINT(91»,SEIGV(13)»IDX(13), 
2 F8LANK(338),FLEIG(2500) 
COMMON FBLANK,L,M 

C 
C  A * * * * * * * * * * * * * *  
C SEIGEN RECEIVES OAIR-SPINS AND TOTAL MS FROM SS9EIG, 
C AND FINDS SSO-EIGENFUNCTIONS SATISFYING THAT DATA. 
C 
C INPUT REQUIRED - TOTAL MS (MTFIX), PAIR-SPINS (SFIX 
C VECTOR), N/2 (NP). 

c 
C THIS SECTION PRODUCES NOROD PRODUCT FUNCTIONS OF THE 
C SPECIFIED TYPE, THE NTH ONE HAVING THE PAIR-FUNCTION 
C LABELS (LIPRGL,NPS,N,I),I=1,NP), PAIR-SPINS 
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C (S(N,I),I=1,NP), AND PAIR-MS'S <M(NPS,N,i;,I=l,NP). 
100 NPROD = 0 

LLIMPl = 4**NP 
DO 200 I1=1,LLIMP1 
TMT = 0 
NM8R = Il-l 
TN = NMBP 
DO 170 12=1,NP 
PI = 4**(NP-I2) 
LABELd?) = TN/PI 
TN = TN - LABEL(I2)*PI 
TS(Î2I = 1 
IF(LABFL(Î2)«EO.O) TS(I2)=0 
IF(TS(Î2KNE.SFIX(I2) ) GO TO 200 
TM(I2I = TS(I2)*(LABEL(Î21-2) 

170 TMT = TMT + TM(I2) 
IF(TMT-MTFIX) 200,180,200 

180 NPROD = NPROO + 1 
DO 190 12=1,NP 
S(NPR0D,I2) = TS(I2) 
M(î,NPROD,12) = TM(Î2) 

7 90 Ld,NPROD,12) = LABELfT2) 
200 CONTINUE 

IF(NPROD.NE.0) 60 TO 299 
RETURN 

C 
C * * * * * * * * * * * * *  
C SSO-MATRIX BETWEEN PRODS OF SPECIFIED TYPE, STORED AS 
C THF MATRIX 'INT'. 
( % * * * * * : ( ( * * « * * * »  

C 
?99 COUNT = 0 

DO 660 12=1,NPROD 
DO 560 11=1,12 
INT = 0 
COUNT = COUNT + 1 
ND = 0 
DO 420 13=1,NP 
IF(L(1,I1,I3).NE.L(1,I2,I3)) ND=ND+1 

420 CONTINUE 
IF(ND.NE.O) GO TO 460 

C 
C DIAGONAL ELEMENTS 
C 
430 DO 450 13=1,NP 

LBL = L(1,I1,I3) 
IF(LBL.EO.O) GO TO 450 
IF(LBL.LE.2) ND=ND+1 

450 CONTINUE 
INT = MTFIX*(MTFIX+1) + 2*ND 
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GO TO 540 
C 
C OFF-DÎAGONAL ELEMENTS 
C 
^60 IF(ND-2) 540,510,540 
510 DO 520 13=2,NP 

IF( LABSTMD, 11,I3)-M(L,12,13) )#GT.L) GO TO 520 
Î 3 M 1  =  1 3 - 1  
DO 518 14=1,Î3M1 
IF(S(I1,Î3)+S(Î1,I4)+S(I2,I3)+S(I2,I4I»NE.4) GO TO 518 
ML?4 = M(1,I1,I3) + M(1,Î3,Î4) 
IF(M134-NE.M(1,I2,Î3)+M(1,I2,I4)) GO TO 518 
ÎF(ÎARS(M134Ï.GT.L) GO TO 518 
INT = INT + 2 

8 CONTINUE 
520 CONTINUE 
==60 FLINT(COUNT) = INT 
560 CONTINUE 

IF(NPROD-l) 970,600,61.0 
600 FLEIG(l) = 1,000 

GO TO 620 
C 

* * * * * * * * * * * * *  

C OIAGONALIZE THE SSO-MATRÎX, GET SSO-EIGENFUNCTIONS 
C i J c A ^ f * * * * * * * * * * * * * *  
610 CALL EIGEN{FLINT,FLEIG,NPR0D,1,IDX,1.00-14) 
620 00 640 I1=1,NPR0D 

N1 = Ti*(Il+i»/2 
FD = FLINT(N1> 
FD = (D$QRT(1.0D0+4.0D0*FD)-1.0D0)/2.0D0 
SFIGV(N > = FD 
FD = FD - SEIGV(IL) 
IF(FD.GT.0c5P0) SEIGV(IL) = SEIGV(IL) + 1 

6^0 CONTINUE 
RETURN 

970 STOP 
END 

SUBPROGRAM 4, 

FUNCTION FLSOME(CI,I,LPS,LSEF,CJ,J,RPS,RSEF,N,MLT,PRS, 
I LABLTM) 
IMPLICIT REAL*8(F), INTEGER<A-E,G-Z) 
REAL*8 DSORT 
DIMENSION PRS(5,20),M(20,8),LOCC(111),ROCC{111), 
! LABEL<8),LBL(20,8),E(8,2),BLANK(208),FSC(2,13,13), 



www.manaraa.com

193 

2 PL(5,20),NSPROD(5,16),L(20,8) 
COMMON FSC,BLANK,M,L,LBL,NSPROD,TNP,TTNP,PL 

C 
C FLSQME CALCULATES THE INTEGRAL OVER L**2 BETWEEN 
C TWO SAAP'S. 
C 

FLSQME = O.ODO 
ND2 = N/2 
PLL = PL(CI»I) 
PLR = PL(CJ,J) 
NLPROO = NSPROO(PLL,LPS) 
NRPROD = NSPROD(PLR,RPSÎ 
TF(CI.NE.CJ) GO TO 10 
IF(I.NE.J) GO TO IC 
IF(LPS.NE,RPS) GO TO 10 
IF(LSEF.NE.RSEF) GO TO 10 

C 
C DIAGONAL-TFRM CONTRIBUTION 

FLSME = MLT*(MLT+1) 
10 DO 70 NU=1,N 

MNU = M(I,NU) 
LNU = Ld.NUÎ 
TF(MNU*EO.LNU) GO TO 70 
DO 68 MU=1tN 
DO 11 CHK1=1,LABLIM 
LOCC(CHKl) = 0 

11 ROCC(CHKl) = 0 
DO 12 CHK1=1,N 
LL = LBL(I,CHK1.) 
RL = LBL(J,CHK1) 
LABEL(CHKI) = LL 
LOCC(LL) = LOCC(LL) + I 

12 ROCC(RL) = ROCC(RL) + 1 
MMU = H(I,MU) 
LMU = L(I,MU) 
IF(MU.NE.NU) GO TO 15 
MMU = MMU + 1 
GO TO 20 

15 IF(MMU.EO.-LMU) GO TO 68 
C 
C APPLY OPERATOR L-(MUÎL+(NU) TO LEFT ORBITAL PRODUCT 
C ( Î ) 

LBLMU = LBL(I,MU* 
LBLNU = LBL(I,NU) 
LA8EL{MU) = LBLMU - 1 
LABEL(NU) = LBLNU + 1 
LOCC(LBLMU) = LOCC(LBLMU) - 1 
LOCC(LBLNU) = LOCC(LBLNU) - 1 
LOCC(LABEL(MU)) = LOCC(LABEL(MUM + 1 
LOCC(LABEL(NU)) = LOCC(LABEL(NU)) + 1 
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C DOES (L-(MU)L+(NU)*I) CONTAIN THE SAME DRBITALS AS 
C THE RIGHT ORB PROD (J) ? 

20 DO 30 CHK1=1,LABLIM 
IF(ROCC(CHKi;.NE.LOCC(CHKl)) GO TO 68 

30 CONTINUE 
C IF SO, FIND THE PERMUTATION (E) THAT CONVERTS 
C (L-(MUIL+(NUI*I) TO THE RIGHT ORB PROD J. THE PERM 
C IS FOUND AS A PRODUCT OF TWO-CYCLES. 

NCYC = 0 
DO 60 CHK1=1,N 
DO 58 CHK2=CHK1,N 
IF(LBL{J,CHK1).NE.LABEL(CHKZ)) GO TO 58 
IF(CHK1.E0.CHK2) GG TO 60 
NCYC = NCYC + 1 
E(NCYC,1) = CHKl 
5(NCYC,2) = CHK2 
SAVE = LABEL(CHK1J 
LABEL(CHKl) = LABEL(CHK2) 
LABEL(CHK2) = SAVE 
GO TO 60 

58 CONTINUE 
60 CONTINUE 

C GET THE CONTRIBUTION TO FLSOME FROM THE L-(MU»L+(NU) 
C TERM 

FME = O.ODO 
00 62 LPR0D=1,NLPR0D 
DO 62 RPRCD=1,NRPR0D 

62 FMF = FME + FSC(1,LSEF,LPROD) # FSC(2,RSEF,RPR00) * 
1 FPMAT(ND2,NCYC,E,TNP,TTNP,PLL,LPS,LPR0D,PLR,RPS, 
2 RPROD) 

1007 CONTINUE 
IF(FME.E0«0«CD01 GO TO 68 
FCMUNU = (LMU-MMU+1)*(LMU+MMU)»(LNU-MNU)*{LNU+MNU+1) 
FCMUNU = DSQRT(FCMUNU) 
FLSOME = FLSOME + ((-1)**NCYC) * FME * FCMUNU 

68 CONTINUE 
C 68 IS END OF MU-LOOP 

70 CONTINUE 
C 70 IS END OF NU-LOOP 
C 
C NORMALIZATION 

PWR = (PRS(CJ,J)-PRS(CI,I)) 
IF(PWR.GE.O) GO TO 75 
PWR = -PWR 
FNORM = 1.0DO/(2**PWR) 
GO TO 80 

75 FNORM = 2 ** PWR 
80 FLSOME = FLSOME*DSORT(FNORM) 

RETURN 
END 
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SUBPROGRAM 5. 

FUNCTION FPMAT(NP,NCYCS,E,TNP,TTNP,PLL,LPS,LPROD,PLR, 
1 RPStRPRODJ 
IMPLICIT REAL*R(F), INTEGER(A-E,G-Z) 
DIMENSION T(4),M(4),SL(8),L(2,13,4),SEP(16),E(8,2), 

1 FC0EFF(16},FBLANK(338) 
COMMON FBLANK,L 

C. 
( %  * * * * * * * * * * * * *  
C CALCULATES (LEFT GEMPROD/P/RIGHT GEMPROD), WHERE 
C GEMPROD DATA IS IN COMMON, AND PERMUTATION CONVENTION 
C IS THAT (123) MEANS'ORBITAL 1 REPLACES ORBITAL 2, 
C ETC.' E.G., (123)ABC = CAB. 
C  * * * * * * * * * * * * *  
C 

FACT? = 7.071067811865475D-01 
FPMAT = O.ODO 
IF(NCYCS.NE.0) GO TO 305 

C WHEN NCYCS=C, PERMUTATION IS TAKEN TO BE THE IDENTITY, 
C THEN FPMAT IS OVERLAP BETWEEN LEFT AND RIGHT SPIN 
C GEMPRODS. 

DO 301 13=1,NP 
IF(L(1,LPROD,I3).NE.L(2,RPPOD,I3)I GO TO 370 

301 CONTINUE 
FPMAT = l.ODO 
GO TO 370 

C 
305 00 365 SI0E=1,2 

PL = PLL 
PS = LPS 
PROD = LPROD 
IF(SIOE.EO.L) GO TO 306 
PL = PLR 
PS = RPS 
PROD = RPROD 

306 COUNT = 0 
C FOR FIXED SIDE AND GEMPROD, SWEEP ALL SEPREDS AND 
C CONVERT SUITABLE DECLABELS TO BINLABELS, 

DO 360 13=1,TTNP 
Î 3 M  = 1 3 - 1  
DO 310 14=1,NP 
PI = 2**(NP-I4) 
T(I4) = I3M/PI + 1 
IF(L(SIDE,PROD,I4).NE.O) GO TO 307 
S = 0 
GO TO 308 

307 S = 1 
308 M(I4) = S*(L(SIDE,PR0D,I4)-2) 
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IF(T(I4).EQ.1) GO TO 310 
C SKIP SEPROD LABELS WHICH ARE NOT ASSOCIATED WITH THE 
C GIVEN GEMPROD. 

IF(M( I4).NIE.O) GO TO 360 
310 Î3M = I3M - T(I4)*PI + PI 

C COUNT SEPRODS ASSOCIATED WITH GIVEN GEMPROD 
COUNT = COUNT + 1 

C FOR EACH SEPROD KEPT, GENERATE THE SINGLE-ELECTRON 
C SPIN FUNCTION LABELS (SL'S) AND THE COEFFICIENT (FC) 

FC = l.ODO 
DO 330 16=1,NP 
TI4 = 2*14 
TI4M1 = TÎ4 - 1 
IF(M(I4).NE.0) GO TO 315 
IF(T(14).NE.2) GO TO 325 
SL(TI4M1) = 0 
SL(TI4) = 1 
FC = FC*FACT2 
IF(L(SIDE,PR0D,I4).EQ.2) GO TO 330 
FC = -FC 
GO TO 330 

315 SL(TI4M1) = 1 
IF(L(SIDE,PROD,I4).EO.3) GO TO 320 
SL(TÏ4M1J = 0 

320 SL(TI4) = SL(TI4M1) 
GO TO 330 

325 SL(TI4M1» = 1 
SL(TI4) = 0 
FC = FC*FACT2 

330 CONTINUE 
IF(SIDE.EO.l) GO TO 340 

C IF SIDE = 2, PERMUTE THE SL'S 
DO 336 K=1,NCYCS 
I = NCYCS + 1 - K 
TEMP = SL{E(I,2)J 
SL(E(1,2 J » = SL(E(1,1»} 

336 SL{E( I,1U = TEMP 
C GENERATE PRODUCT 'SEPROD' FROM SL'S 
340 SEPROD = 0 

DO 345 14=1,TN? 
345 SEPROD = SEPROD + SL(I4)*(10**(TNP-I4I) 

C IF SIDE=1, STORE SEPROD AS SEPÎCOUNTJ, FC AS 
C FCOEFF(COUNT) 

IF(SIDE.E0.2) GO TO 350 
SEO(CnUNT) = SEPROD 
FCOEFF(COUNT) = FC 
GO TO 360 

350 CONTINUE 
DO 355 14=1,NSPL 
IF(SEPROD.NE.SEP(I4)) GO TO 355 
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FPMAT = FPMAT + FC*FC0EFF(I4) 
355 CONTINUE 
360 CONTINUE 

C IF SI0E=1, STORE NUMBER OF SEPRODS ASSOCIATED WITH 
C LEFT GEMPROD 

IF(SIDE.E0.2) GO TO 365 
NSPL = COUNT 

365 CONTINUE 
370 RETURN 

END 

SUBPROGRAM 6. 

SUBROUTINE EIGFN{A,R,N,MV,IDX,CVG) 
C 
C COMPUTE EIGENVALUES AND EIGENFUNCTIONS OF A REAL 
C SYMMETRIC MATRIX 
C 
C DESCRIPTION OF PARAMETERS -
C A - ORIGINAL MATRIX, DESTROYED IN COMPUTATION, 
C RESULTANT EIGENVALUES ARE DEVELOPED IN DIAGO-
C NAL OF MATRIX A* 
C R - RESULTANT MATRIX OF EIGENVECTORS (STORED 
C COLUMNWISE, IN SAME SEQUENCE AS EIGENVALUES) 
C N - ORDER OF MATRICES A AND R 
C MV - INPUT CODE 
C 0 COMPUTE EIGENVALUES ONLY (R NEED NOT 
C BE DIMENSIONED BUT MUST STILL APPEAR 
C IN CALLING SEQUENCE) 
C 1 GENERATE R MATRIX COMPUTE EIGEN-
C VALUES ONLY 
C 1 GENERATE R MATRIX COMPUTE EIGEN-
C VALUES AND EIGENVECTORS AND SORT 
C -1 SAME AS 1 EXCEPT R IS INPUT 
C 2 GENERATE R MATRIX COMPUTE EIGEN-
C VALUES AND EIGENVECTORS BUT DO NOT 
C SORT 
C -2 SAME AS 2 EXCEPT R IS INPUT 
C CVG - CRITERION FOR CONVERGENCE 
C CVG IS POSITIVE FINAL NORM=CVG 
C CVG IS NEGATIVE FINAL NORM IS COM-
C PUTED FROM CVG 
c  
C 
r ORIGINAL MATRIX A MUST BE REAL SYMMETRIC (STORAGE 

M0DE=1). MATRIX A CANNOT BE IN THE SAME LOCATION AS 
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C MATRIX R. A IS COLUMNWISE UPPER TRIANGULAR AND R IS 
C COLUMNWISE SQUARE, EACH STORED IN ONE-DIMENSIONAL 
C ARRAYS. 
C 
C 
C 

IMPLICIT REAL*8(A-H,0-Z; 
DIMENSION A(1),R(1),IOX(U 

C GENERATE IDENTITY MATRIX 
IF(MV)21,21,10 

10 IJ=0 
DO 20 J=I.N 
DO 20 1=1,N 
IJ=IJ+1 
R(IJ) = O.ODO 
IF( I.EQ. = l.ODO 

20 CONTINUE 
21 MX=IABS(MV) 

IF(N.EO.l)RETURN 
C COMPUTE INITIAL AND FINAL NORMS (ANORM AND ANORMX) 

25 ANORM=O.OD+CO 
IDX(1)=0 
DO 35 1=2,N 
JLIM=I-1 
IDX( I I=IDX{JLIM)+JLIM 
IA=IDX(I) 
DO 35 J=1,JLIM 
IA=IA+1 

55 ANOR.M=ANORM+A(IA)*A(IA> 
IF(ANORM) 165*165,40 

40 ANORM=2.0D+00*OSORT(ANORM) 
DIV = 2-ODO / DFLOATdA + 1) 

41 ANRMX=CVG 
IF {ANRMX»42,43,42 

42 ANRMX = AN0RM*0IV*DA8S{ANRMX) 
43 IF{ANRMX,GT.ANORM) GO TO 165 

INITIALIZE INDICATORS AND COMPUTE THRESHOLD, THR 
THR=ANORM 

45 THR=THR*DIV 
155 IND=0 

DO 1001 L=2,N 
LM0=L-1 
LO=IOX(L) 
LL=L+LO 
no 1001 M=1,LM0 
MO=IDX(M) 

COMPUTE SIN AND COS 
LM=LO+M 

62 IFCDABS{A(LM)>-THR»1001,65,65 
65 IND=1 
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MM=M+MO 
X=0.5D+00*{A(LL»-A(MM)) 

68 Y=-A(LM)/DSQRT(A(LM)*A(LMJ+X*X} 
IF(X) 7G,75,75 

70 Y=-Y 
75 SINX=Y/DSORT(2.0D+00*(1.00+00+(DSORT(1.0D+00-Y*Y)))) 

SINX2=SINX*SINX 
78 C0SX=DS0RT(1.0D+00-SINX2) 

C0SX2=C0SX*C0SX 
SINCS =SINX*COSX 

C ROTATE L AND M COLUMNS 
IL0=N*(L-1J 
IM0=N*(M-1» 
DO 125 1=1,N 
IO=IDX(I) 
IF(I-L) 80,115,80 

80 85,115,90 
85 IM=I+MO 

GO TO 95 
90 IM=M+IO 
95 IF(I-L) 100,105,105 
ICO IL=I+LÛ 

GO TO 110 
105 IL=L+IG 
110 X=A(IL)*COSX-A(IM)*SINX 

A(IM)=A(IL)*SINX+A(TM)*COSX 
A(IL)=X 

115 IF(MX)120,125,120 
120 ÎLR=ÎL0+Î 

I«R=ÎM0+Î 
X=R(ILR)*COSX-R(IMRi*SINX 
R{ IMRI=RCILR)*SINX+R(IMR»#COSX 
R{ILRl=X 

125 CONTINUE 
X=A(LM)*(SINCS+SINCS) 
Y=A(LL)*C0SX2+A(MM J*SINX2-X 
X=A(LL)*SINX2+A(MM)*C0SX2+X 
A(LM{ =0.000 
A(LL)=Y 
A(MM)=X 

1001 CONTINUE 
150 IF(IND-l) 160,155,160 

C COMPARE THRESHOLD WITH FINAL NORM 
160 IF(THR-ANRMX)165,165,45 

C SORT EIGENVALUES AND EIGENVECTORS 
165 IF(MX.NE.l) RETURN 

10=0 
DO 185 1=2,N 
JLIM=I-1 
IQ=IO+N 
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LL=I+ÎOX{I) 
JO=-N 
DO 185 J=1,JLIM 
JO=JO+N 
MM=J+IDX(J) 
IF(A(LL)-A(MM))170,185,185 

170 X=A(LL) 
A(LL)=A(MM) 
A(MM)=X 

175 DO 180 K=1,N 
ILR=IO+K 
IMR=JQ+K 
X=R(ILR) 
R(ILR)=R(IMR) 

î«0 R(I«R>=X 
185 CONTINUE 

RETURN 
ENO 
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