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PREFACE

This dissertation is concerned with the simplification
of calculations on electronic systems through the exploita-
tion of permutational symmetry.

Accurate theoretical descriptions of chemical phenom-
ena are made easier when secular egquations can be factored
in terms of commuting operators. It is impractical to ig-
nore this possibility in any but the simplest cases. In most
guantum-chemical calculations, it is therefore desirable to
construct wave functions from antisymmetrized space-spin
functions that are also eigenfunctions of §2 and §z'

Two problems must be solved. First of all, one must be
able to generate spin eigenfunctions for any desired eigen-
values S and MS' In other words, one must be able to find a
basis for any given irreducible representation of the symmet-
ric group. For systems with more than a few electrons, this
is more difficult than it might seem. The problem has re-
ceived much attention in recent years, and a survey of the
techniques available appears in the third and fourth chapters.

The second problem is toNFtructure the wave function
in such a way that expectation values can be calculated con-
veniently. It is particularly important to obtain a simple
formula for the energy. Previous attempts have yielded ex-
pressions involving sums over many permutation matrix elements

or other complicated coefficients. This subject is discussed



vi

in the second chapter.

We introduce a particular construction for unrestricted
configuration-interaction wave functions which simplifies
the calculation of expectation values. General wave functions
are expressed in terms of pure-spin components of determi-
nantal functions. The building blocks, called "spin-adapted
antisymmetrized products", or SAAP's, are designed to exploit
double occupancy.

It is shown that SAAP's, when constructed from ortho-
normal orbitals, can be handled in calculations more easily
than Slater determinants. Simple formulas are derived for
matrix elements of the Hamiltonian and £2. A computer program
is given for the evaluation of coefficients occurring in the
energy matrix elements.

Two new methods are described for the construction of
suitable spin eigenfunctions. The first of these is an algo-
rithm for generating Serber functions by diagonalization of
the §2—matrix. The other is a direct procedure for obtaining
orthogonal matric bases spanning Yamanouchi-Kotani and Serber

representations of the symmetric group algebra.

A computer program is given for generating simultaneous
eigenfunctions of £2’ ﬁz, §2, and §z.

In the discussion that follows, certain special symbols
and conventions are used. These are explained in Appendices

A and B.



GENERAL CONSIDERATIONS
Indistinguishability of Electrons

Electrons are identical, meaning that no experiment
can tell them apart. This implies that expectation values
are independent of any electron numbering scheme. Suppose
that ¥(1,2,...,N) is the exact wave function (a solution
of the Schrodinger equation) for an N-electron system, and

that P is any of the N! permutations of the electrons. Then

for any observable operator 6,

<P¥(1,2,...,N)|06P¥(1,2,...,N)>
= <¥(1,2,...,N)|0¥(1,2,...,N)>. (1)

Since permutations are unitary operators (Appendix B), it

follows that

<¥(1,2,...,N) P top¥(1,2,...,N)>

= <¥(1,2,...,N) |0¥(1,2,...,N)>

for any wave function. Thus it must be that

6 =216 (2)

every observable operator is invariant under similarity
transformations that permute its electron labels. In other
words, every observable operator affects electrons symmetri-

cally.

If it should happen that ¥ is permutationally symmet-



ric or antisymmetric,

P‘y(l,z,...,N) = i?(l’z’...,N)’

then it is clear that (1) is satisfied. However, (1) does
not imply that the wave function has this property. In

fact, any product function

Y(1,2,...,N) = a(l)b(2) +++ c(N)

b9

will satisfy (1).

The behavior of the operators does induce a behavior
in the wave functions. It follows from (2) that observable
operators commute with all electronic permutations, and
group~theoretical arguments then lead to the conclusion
that eigenfunctions of observable operators span represen-
tations of the symmetric group.

Suppose that the operator 0 has, for a given eigen-
value, a set {¢l,¢2,...,¢m} of m linearly independent,
degenerate eigenfunctions. Then (2) guarantees that the
result (P¢i) of permuting any eigenfunction in the set
is a new function

Po; = §¢j[P]ji ,

which is itself a vector in the space spanned by the ¢i.
The number [P]ji is the (j,i)-element of the matrix [P]

representing P, and the functions'{¢i} are said to form a



basis for the representation.
If the symmetric group Sy contains every symmetry
transformation commuting with 6, then the degenerate func- -

tions {¢i} span an irreducible representation of Sy

(apart from accidental degeneracies), and each G-eigen—

value will be associated with a particular irreducible

representation.

BExclusion Principle

Since permutations commute with the Eamiltonian, the
implication of the argument above is that solutions of
the N-electron Schrddinger eguation for a given energy
must span a representation of the symmetric group. Permu-
tations of electrons do not comprise every symmetry trans-
formation commuting with the Hamiltonian, so there is no
theoretical reason to suppose that such a representation

will be irreducible.

Nevertheless, experiment demands that solutions of
the Schrddinger equation for fermion systems must span
the one-dimensional (thus irreducible) antisymmetric repre-
sentation of the symmetric group. In cther words, for

every P in SN’

pPv¥(1,2,...,N) = €(P)¥(1,2;...,N),

where €(P) is +1 when P is even and -1 when P is odd.

Here P is a transformation which permutes the space and



spin coordinates of the fermions.

This result is the Pauli Exclusion Principle for

fermions.

Spin Eigenfunctions

It happens that SN contains every symmetry transfor-
mation commuting with the total spin operator §2. Thus

spin eigenfunctions ea(NSM), satisfying the equations

2 725 (5+1) 6, (NSM) ,

S Ga(NSM)

Szea(NSM) ﬁMea(NSM),

are basis functions for irreducible representations of SN'
Here the permutations transform only the spin coordinates
of the electrons.

Spin eigenfunctions are important in quantum chemis-
trv because, for many atoms and molecules, the Hamiltonian,
ﬁ, very nearly commutes with §2 and §z’ This means that
eigenfunctions of # can be chosen to be also eigenfunctions
of §2 and §z’ Doing so simplifies energy calculations by
factoring the energy matrix: if two trial wave functions
wa(NSM) and wS(NS'M') are spin eigenfunctions for which

S'#£S or M'#M,
<y (NSM) [ﬁws(NS'M')> = 0.

The energy matrix reduces to a direct sum of blocks within

which S and M are constant.



Thus the Pauli and Indistinguishability Principles lead

to two conclusions regarding electronic wave functions:

(i) the wave functions are antisymmetric with respect
to simultaneous permutations of the space and spin
coordinates of the electrons;

(ii) they can often be chosen to be eigenfunctions of
§2, implying that they transform according to irreduci-

ble representations of the symmetric group permuting

only the spin coordinates of the electrons.

Spin-Adapted Antisymmetrized Products

Slater determinants (Slater, 1929, 1931) are antisym-
metric with respect to simultaneous permutations of space
and spin and are §z—eigenfunctions, but they are not in gen-
eral eigenfunctions of §2. An approximate wave function which
is to be a spin eigenfunction is usuvally constructed as a
linear combination of Slater determinants. In fact, any
antisymmetric wave function can be expanded in Slater deter-
minants: such determinants span the configuration space
(Lowdin, 1955a).

A Slater determinant for N electrons is obtained by
applying the antisymmetrizer {Appendix B) to the product

of a space product function ¢(N) and a spin product func-



tion ©(NM) having the §z-eigenvalue M:
o(NM) = Al¢(N)e(NM)].

(A has been defined in such a way that it is idempotent,
but ¢(NM) is not normalized.) In the discussion that fol-
lows, the orbitals of which ¢(N) is composed will not be
discussed. They may be atomic or molecular orbitals: what
they are in particular does not concern us at this stage.
The pertinent fact is that ¢(N) is some product of one-
electron orbitals, which we shall for convenience assume
to be orthonormal.

In analogy to the Slater determinant ¢(NM), we can
define an antisymmetric eigenfunction ol §z which is also
an eigenfunction of §2 by replacing the spin product func-
tion ©(NM) with a spin eigenfunction ea(NSM). The new

function,

¢, (NSM) = Alo(N)®, (NSM) ], (3)

will be an eigenfunction of §2 because the spin operator
commutes with A. Functions like that given in (3) can be
projected out of Slater determinants by suitable operators,
and we shall refer to them as "spin-adapted antisymme-
trized products", or SAAP's. Since each spin eigenfunction
ea(NSM) is a linear combination of spin products, a SAAP

is a linear combination of Slater determinants.

Spin-adapted antisymmetrized products span the N-



. electron configuration space: any antisymmetric wave func-

tion can be expanded in terms of them. Furthermore, SAAP's

possess an advantage over Slater determinants, in that they

are eigenfunctions of §2. Slater determinants are easy to

handlie without the use of group theory, and lead to con-
venient formulas for the matrix elements of observable
operators. We shall show, using group theory, that SAAP's
lead to formulas no less simple, and thus that they are
more efficient building blocks for wave functions when S
is a good guantum number.

The antisymmetrizer in (3) masks the true relation-
ship between the space and spin components of the SAAP.
Suppose that there are d(NS) spin eigenfunctions ea(NSM)
for a given M. Then these functions span an irreducible
matrix representation [P]NS of Sy * for any permutation
P transforming the spin coordinates of the electrons
1,2,...,N,

oMy NS
o, (NSM} = g 9g (NSM) [Plao .

This will be called the spin representation of SN' Using

this relation in (3),

¢, (NsM) = (vi) T3 Ze(P)(P¢)(Pea)
P

-1 . NS
= (NI) e(P) (P¢) [}, IPI1,}
o) ) {Jo, 12150

!
(507 HIe @) [P13>(29)} 8, |

(4)



or o (NSM) = [a(NS)1™% To, (NSe)e, (NSM), (5)
a g 8 B

where 6, (NSa) = [a(Ns)/Ni] [e(P)I[P1G: (P0). (6)
P

Equation (5) shows that the SARP is a sum of terms,
each cf which is the product of a spin eigenfunction and
some kind of space function. The space function, as shown
in (6), is projected out of the "primitive" space procduct
function ¢ by a Wigner operator (Wigner, 1931). As a con-
sequence, these space functions form a basis for an irre-

ducible representation o SN’ called the space represen-

tation: ii k=4d{(NS)/Ni,

NS

Pog(NSa) = k g'e(P'>iP'15&<PP’¢>
=k [ e tem) 270t (279)
P"
=k [ e heen JrThE s e
P“ Y
= (> g{kgne(P">[P"1§§(P"¢)} RS
= e(?) Jo_(Nsa) 2 *1%5 | (7)
v Y By

Comparison of (7) and (4) shows that the spin functions

NS

transform under P according to the matrix {P] -, while the

space functions @B(NSa) transform according to the trans-

pose of s(P)[P-l]NS. Thus there is a close relationship



between the spin and space representations: they are recip-
rocal to each other in such a way that the SAAP is anti-
symmetric. These representations are said to be dual
(Kotani et al., 1955).

The spin-adapted antisymmetrized products have been
displayed in two equivalent forms. Either form demands a
procedure for obtaining spin eigenfunctions, and one of
them reguires dual space functions. We shall see later

how these might be obtaired. First we examine the useful-

ness of SaapP's.
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ELECTRONIC WAVE FUNCTIONS AS SUPERPOSITIONS

OF SPIN-ADAPTED ANTISYMMETRIZED PRODUCTS
Linear Dependence of SAAP's

Any antisymmetric wave function that is an eigen-

2

~ ”
function of S© anc Sz can be written as a linear combina-

tion of SAAP's having N, S, and M fixed:

v(usM) = ) ] clo,a)Alo(N)e, (NSM)] . (8)
P Q

If the sum over space products includes contributions from
different configurations, Y is a configuration-interaction
(CI) function. We assume for generality that this is the
case.

In (8), the sums run over every space product for the
configurations of interest, and every spin eigenfunction
for the given N, S, anéd M. In general, scme of the SAAP's
will then be linearly dependent. In order that the coeffi-
cients c(¢,a) will be unigue and the secular equation will
be soluble, it is essential to remove this dependence. Two
sources of linear dependence are easily icdentified.

Suppose that Y includes évery SAAP containing the space
product ¢. SAAP's containing a space product ¢ =P¢ differ-
ing from ¢ by only a permutation should not be included in

Y. For

Alo'e,1 = Al(ps)6,] =AP[o+P e ] = e(P)gtP‘ll";iA[fbeS].
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Thus any SAAP containing ¢’ is linearly dependent on SAAP's
already included in ¥. The additional one contributes noth-
ing new.

It follows that, in (8), it is sufficient to sum over
just those space products containing different orbitals.

Double occupancy is a second source of linear depend-
ence. If a space product ¢ contains a doubly-occupied
orbital, there exists a transposition t=t_l such that

to=¢. It follows that

Al¢e 1 = o (NsM) = Al(t9)e ] = Atiote,] = -4[¢te ]

- TL1NS . h
g 1<y BC‘-A{QGBJ

= _J +3NS M
g [tigy os (NSM) ,
. . o 4 NS s
or % @g (NSM) - {[t]5 +6, | = C.

Thus the only way to avoid having all the SAAP's for given
N, S, and M linearly dependent is to construct the spin

eigenfunctions ea(NSM) in such a way that

. NS _
LB]Ba - 66&

for every transposition t under which ¢ is invariant. A
procedure for doing this is introduced in the next two

sections.
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Space Products

It is possible to structure space products and spin
eigenfunctions in such a way as to greatly simplify calcu-
lations on systems with double occupancy. For this pur-
pose, we will introduce two conventions.

In the following, we shall refer tc doublyv-occupied
orbitals as doubles, anéd to singly-occupied orbitals as
singles. Two electrons labelled 2A-1 and 2}, where

A=1,2,..., will be referred to as a geminal pair. Orbi-

=

tals containing a geminal paixr of electrons will be said

to occupy geminal positions. Two-cvcle permutaticns of

the form (2)-1,2)) will be called geminal transpositions,

and a procduct of geminal transpositions will be called a

geminal permutation. The subgroup of SV containing every
&

product of the geminal transpositions
(llz)! (3r4)r ee oy (214'1'2].1)1

including the identity, will be called the geminal group

4] . Whereas we use P to denote a general element of SN’
a geminal permutation will be denoted by G, and a geminal
transposition by g.

The discussion of the last section showed that, of
all possible space products containing the same orbitals,
a CI wave function need contain only one - any one. We

are free to make a convention as to how such a space prod-
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uct shall be chosen. We have assumed for convenience that the
space orbitals are orthonormal. In addition, we adopt the

following convention for the structure of space products:

they will have all their doubles listed first, with ascending
labels, followed by the singles, in the order of ascending
labels. For example, of twelve possible space products con-

taining the atomic orbitals (ls)2252pO , we pick the function

01 = ’ls(l)ls(2)25(3)2po(4)]-

As in this example, space products containing 7 doubles
will be denoted by that subscript: e.g., ¢_ . ¢’ . Space prod-
1]
ucts with the subscript 7 are invariant under the geminal

permutations belonging to *yﬁ” where Tw.
H

Geminally—-Adapted Spin Eigenfunctions

There are infinitely many ways to make spin functions
for given N, S, and M, corresponding to infinitely many
equivalent sSpin representations oi SN‘ We choose the follow-

ing convention for spin functions:

(i) The spin eigeniunctions will be orthonormal.

(ii) They will be constructed by coupling the
spins of each geminal pair of electrons sep-
arately, then coupling the pair-spins to
each other. If N is odd, the spin of the

remaining electron will then be coupled
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to the resultant spin.

Spin eigenfunctions constructed in this way, using
Clebsch-Gordon coefficients, were first described by Serber
(1934a, 1934b). They contain a singlet or triplet component
for every geminal pair of electrons, and thus are either
symmetric or antisymmetric with respect to every geminal
transposition in SN. The Serber functions for N=4, S=1, M=0

are:
[a(1)B{2)+8(1)a(2)1[a(3)8{4)-B(3)a(4)]/2,
[a(Da(2)8(3)8(4)-8(L)8(2)a(3)a(4)1/Y2, (9)
[a(1)B(2)-B(L)a(2)][a(3)B(4)+B8(3)a(4)]/2.

We shall denote a spin function antisymmetric in the
first 7 geminal péirs, but symmetric in the next one, by the
subscript m. If there are several such functions, they will
be called eﬂl(NSM), ewz(NSM), etc. Using this notation, the
functions in the example above would be labelled 601(410),

602(410), and 911(410). 2s a result of the notation,

geﬂa = iewa for every g in SN’

but in particular,

98,4 = “6,, 1T g belongs tO,HTT, , where wgm.

These relations imply that the matrices representing
geminal transpositions in the spin representation spanned

by Serber spin functions are diagonal: since the functions



are orthonormal,

NS - 4+ \
(9l ng g = <Opug (NSM) [gem(NSMp = 2<@_ng (NSM) lem(Nsm)>

=8 (7" B, me)

for every g in S.. In particular, if g belongs toQﬂ,, where
]
msm or Twsw",
NS

Lg]ﬁuslﬁa = -§{w"B,7a) .

Since geminal permutations G are products of geminal

transpositions, we have the more general result

NS _ wo - . ;
[G]ﬂns’ﬂa = £§(7"B,ma) for every G in Sg.

In particular, if G belongs to 3n, , where w<m or w<T",

[61}ng o = €(G) S(T"8,ma), (10)

in which €(G) is +1 when G is even and -1 when G 1s odd.
This result has a special consequence that will prove
useful. We write "Geé%.“ to mean "G belongs to,ﬁﬂ,". Since
every geminal permutation is a product of mutually commuting
geminal transpositions, with a factor I or (2u-1,2u) from

the uth geminal pair, the order of , is 2", ana (10) gives
T

7 e(e) (61N = T £(G)e(G)§ (n"8,ma)
Gayﬂ,c T8, ma GEg,n.l

S(v"B,ma) ) (+1),
GEH .

K
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NS !
or Z e{G) [G]_% =2 §(w"B,ma) (11)
Gey%, T8, ma

when 7<T or 7sm". This result is, as we shall see, a great

aid in simplifying the expressions for expectation values.
Linearly Independent SAAP's

The two conventions we have adopted further simplify the
wave function (8) when the space products contain doubly-
occupied orbitals. We have already reduced the number of
space products regquired to the bare minimum: one product for
each choice of orbitals. The conventions reduce the number
of spin eigenfunctions reguired.

Consider the SAAP A[¢weﬁd]' where 7<n. The geminal trans-
position g=g—l=(2w4l,2n%2), whick belongs to:ﬁﬂ but not to

ﬁw,, has the properties

As a result,
'A[¢ﬂewh] =‘A{<g¢ﬁ)eﬂh] =’Ag[¢w.gewh] = iAI¢ﬂeﬁﬁ]'

so that the SAAP is zero. In other words, if a SAAP contains
a space product with doubles in geminal positions in which
the associated spin function is not antisymmetric, then that

SAAP vanishes.

This result reduces the sum over spin functions in the

CI wave function: we have now
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¥ =7 I c( ,m0)Al$, 01, (12)

TOTo
¢ﬂ o

T’
"where the sum over space products ¢w includes only one prod-
uct for each choice of orbitals, and the sum over spin func-
tions includes only some of them.
The wave function has been reduced to the bare minimum:
the SAAP's in (12) are all linearly independent. In fact, we
now show that they are all orthogonal.

The overlap between two SAAP's with the same values

of N, S, and M is

8= <Alo 0. 1AL 08 451>

T To

<¢ﬂeﬁblA[¢pedB]

(N!) ;E(P)<eﬁdlpeds><¢nlp°p>'

Here we assume that wpw and pxp, for otherwise the SAAP's
would vanish. The first integrai on the right is the (7e, oB) -
element of the matrix representing P in the Serber spin repre--

sentation for N, S. Thus

— - -l 1NS
A = (N!) XE(P)[PJﬂh’,

<6_|Po >.
3 pB Tm p

No two space products in the CI wave function contain the

same orbitals, so <¢ﬂ]P¢o> is zero unless ¢w=¢p:

-1 NS :
A =500, 49,) (W) ;e<P)IP]ﬂ&,dB<¢WIP¢ﬂ>.
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The integral on the right is zero unless P belongs to the

geminal grou.p;%j7T under which ¢T is invariant:
i

_ . -1 NS
A= 68(8.,6,) (NI) Gggi(G)[G]fd'dB .
Using (11), ., =
A = 6(¢ﬂ,¢p)6(ﬂa,p8)-2'/N£ (13)

This proves that the functions

N!"l/z

5?) Ale_(We_ (NsM) 1,

——

where 7<7 and only one space product is included for each
choice of orbitals, form a complete orthonormal set spanning
the space of N-electron antisymmetric wave functions having
spin eigenvalues S and M. These SAA:r's are therefore effi-

cient building blocks for CI wave functions when S is a good

guantum number.

Energy Matrix Elements between SAAP's

Constructed from Orthonormal Orbitals

General formula

The importance of the space and spin conventions intro-
duced in the last sections lies in the way in which they sim-
plify the calculation of expectation vaiues. It has been
shown that they facilitate the removal of linear dependence
in the wave function. We ncw shcw that they simplifyv the

calculation of energy matrix elements.
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It is assumed that the wave function (12) is constructed
from orthonormal orbitals, and that the Hamiltonian is, for
practical purposes, spin-free. Except for these conditions,
our results will be perfectly general, and applicable to
either atomic or molecular systems.

The immediate result of (12) is that the energy is a
sum of Hamiltonian matrix elements between spin-adapted
antisymmetrized products. The problem is to express such
matrix elements in terms of elementaryv one- and two-electron
integrals.

Just as SAAP's are generalizations of Slater determi-
nants, we shall obtain matrix element formulas which are gen-
eralizations of Slater's matrix element rules. Despite the
fact that the derivations are complicated by group theory, the
results are very nearly as simple as those for determinantal
functions. Before proceeding to the derivation, we define
notation and display the formulas obtained.

We consider the two SAAP's .A[¢W(N)eﬁa(NSM)] and

A[¢D(N)ed8(NSM)], where the space products are

(14)

and ¢p = PyPy ttt Py -

Here T and Py are the orbitals occupied by electron k in

¢_ and ¢p. According to convention, ¢ﬁ and ¢p contain 7 and

T
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o doubles, respectively. It should be noted that an orbital
T in ¢n can occur also in ¢p, and an orbital P in ¢p can
occur in ¢ﬂ. We write, for example, n(wk,¢ﬂ) and n(wk,¢p) to
denote the occupancies of T in ¢w and ¢p.

It is assumed that ¢ﬂ and ¢p differ by no more than two
orbitals, and that w<w’ and pgp. Otherwise, the energy matrix
element is zerxo.

There is a permutation,ll, that rearranges ¢p so as to
place it in "maximum coincidence" with ¢n° This means that
(£¢p) and ¢ are identical except possibly for the orbitals

occupied by one or two electrons.

We break down the Hamiltonian in terms of the one-

electron Hamiltonians hi and the electronic interactions gij’

1>

- )
1

.<§ 85,

1

where H.. = (N-1)

i3 (hi-!-hj) + S5

J
The general formula for the energy matrix element turns

out to be [when the SAAP's are normalized according to (13)]

<Al¢_©_.

- TTOL][H].»’a[cppepls]>
= e(d) } N(T, , %3P s0_)
L L Naemgiegieg) -
i 3

NS .
x {10I0g, ga<mymy 18 ylo 00>

NS

- [(i'j)L]ﬂa,p,B

<7Tinj IHij l pspr>} 4 (15)



21

in which
_ [+ . even
eld) = {-l} when £ is { oddl *

n(r.,0_ )n(7.,¢_)nlp_,¢ In(p_,$ )11/2
. _ i’*rw 37T r‘’’p s’7p
N(wi,ﬂj.orps) = { }

[+ (my )17 1146 (o0 ) 1 :
NS _
[p]wa’p% = <eﬂa(NSM)]PledB(NSM)> ,
<ninjlaij}prps> = {f w;.‘.(i)'rr;.‘(j)Hijpr(i)ps(j) d_}gidggj .

and oL and p, are the orbitals occupied in (£¢p) by elec~-

trons i1 and j, respectively.

it ¢W=¢p, the sum in (15) is over every distinct pair
of orbitals in the space product. For example, if =T, is a
double, but Ty and T, are singles, then the sum may include
the pairs (ﬁl,ﬂz), (wl,ﬁ3), (wl,ﬁ4), (ﬂ3,n4), in which case
it does not include (m,,%;), (my,m3), or (m,,7,). Or it may
include (Wl,ﬂz), (ﬂz,ﬁ3), (ﬂz,ﬁ4), and (w3,w4), in which case
it does not iaclude (wz,wl), (ﬂl,ﬂ3), or (ﬂl,ﬂ4). In other
words, doubles do not contribute duplicate terms to the sum.
When ¢ﬁ=¢p, the alignment permutation is L=I.

If ¢ﬂ and ¢p differ by one orbital, the sum is over
every distinct orbital pair in ¢ﬂcontaining the differing
orbital. For example, suppose that a, b, ¢, & are orbitals,
and ¢w=wlw2n3w4=aabc while ¢p=plpzp3p4=abcd. The differing
orbital in ¢W is a, and in ¢D is d. Then the sum in (15) may

include the orbital pairs (wl,n2)=(a,a), (wl,ﬂ3)=(a,b), and
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(wl,ﬂ4)=(a,c), but not (ﬂz,ﬂ3) or (ﬂz,w4) as well. In this
example, L =(1,2,3,4).

If ¢w and ¢p differ by two orbitals, the only term occur-
ring in the sum is that for which LS and ﬂj are the differing
orbitals.

The full power of the SAAP formalism becomes evident when
one evaluates the matrix element in specific cases, express-
ing it in terms of one- and two-electron integrals. We save

the derivations until later, and give here only the results.

Case when 9w=9p

In this event, =T s Pg=T5 andL=I. Writing

n(wi) = n(wi,¢ﬂ) = n(wi,¢p), we have

H|AL® ep’8]>

<A[q)7fe‘ﬂ"a] 0

= 6(ra,08) § {n(r)<m fn|m,> + [n(n)-1]l<m %, [g]m 7 >
T .

1

+ £.<§.n(ﬁl)n(1j){ (7o pB)<nleIg[ﬂle>
i 3
. ., NS
- {(l'J)]ﬂ&,p18<wiwjlglﬂjwi>} ’ (16)

the sums being over distinct orbitals (i.e., only one from

each double) . Eere g=(e2/r12) and h is a one-electron Hamil-

tonian.

Case when ¢_ 2and Qp differ by one orbital
Let the differing orbital be wu in ¢T and Py in ¢p.

Then
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<Alo 0.+ 1IH|ALS 61>
= [n(n 000,012 c (&)
{11 so<m Inleg> + In(m o) -11<m m |glegm >
+Inlog,9,)-11<m p |glo ps>}

+ ) n(T o ){{L] 58,5 lg]p

T

J
(#1,04) - [, L1 e, 8T lglr >}} . (17)

J

where the sum is over distinct orbitals in ¢ﬂ other than the

orbitals wu and Py- A double makes only one contribution.

Case when o and gp differ by two orbitals

We take the differing orbitals to be wu, T, in ¢w' and

Pyr P in ¢p. There are no sums in the formula and no one-

electron integrals arise. The result is, then,
] .
<A[¢ﬂeﬂh]lHlA[QpedB]>
= N(ﬁu,ﬁv;DU,pT)'E(L) x

x {10105 ga<mm lglege >

ey 1NS
- LDy e<m T lgle o> (18)

Discussion

These formulas are very nearly as simple as Slater's
rules for matrix elements between determinants (Slater, 1929),
the difference being that certain delta functions for one-

electron spins have been replaced by spin representation
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matrix elements for the permutations L ana (i,j)iu

Formula (15) was first obtained, in a slightly less
simple form, by K. Ruedenberg (private communication, Iowa
State University, Ames, Iowa, 1968). The formulas shown here,
as well as formulas for the matrix elements of p-electron
operators and pth-order reduced density matrices, will be
reported by Ruedenberg and Poshusta (1971).

There have been previous attempts to obtain formulas
of this type. Kotani et al. (1955) used group theory to sim-
plify the expressions for energy matrix elements between
spin components of determinantal functions. Harris (1967)
extended this work, and gave closed- and open-shell formulas
for matrix elements of one- and two-electron operators, with-
out assuming that the orbitals are orthogonal. Even with this
assumption, his results were complicated, involving sums
over many permutations. Karplus et al. (1958) obtained matrix
element formulas for one-electron operators.

The case when the wave function is expressed as one SAAP
is similar to the extended Hartree-Fock approximation of
Lowdin (1955b, 1960). Matrix elements for spin-free operators
in this formalism were obtained by Pauncz, de Heer, and
Lowdin (1962) for application to the alternant molecular or-
bital method. The formulas were generalized by Pauncz (1962,
1969). The results igvolved various complicated coefficients,

closed expressions for which were found by a number of work-
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ers (Percus and Rotenberg, 1962; Sasaki and Chno, 1963; Smith,
1964; Shapiro, 1965; Smith and Harris, 1967). Reviews have
been given by Harris (1967) and Pauncz (1967, 1969).

The formulas presented here avoid these difficulties.
Their close relation to Slater's rules is emphasized by the
ease with which they can be reduced to those rules when the
SAAP's involved happen to be Slater determinants. Consider,
for example, the case when ¢w=¢p and M= =§: eﬂh=eds=aa---a .
Since these spin functions contain no antisymmetric factors,
it must be that w=p=0 and n(wi)=l for every orbital T in
¢y We have §(ma,pB)=1 and

NS

ﬂa,d8=<aa°'.a](l’j)aa°'.a> =1

[(1,3)]

in (16). The result is the formula

<Aloglaar =) ] |E|Al¢y(aass+a)]> (19)
= §‘<wi|hi]wi> + §.<;{<ﬂiﬁjIgijlwiﬂj>-<niﬁj[gij[iji>}.
i it

Since.A[¢0(aa---a)] = (aa---a)A[¢0], (19) is the formula
for the matrix element <A(¢0)lﬁll(¢o)>, where ¢0 consists
entirely of singly-occupied orbitals. Thus.A(¢0) is a "space
only" Slater determinant, and (19) is analogous to the famil-
iar formula for the energy of a determinantal wave function.

Appendix D contains a listing for a Fortran program to
implement formulas {16)-(18). It finds the alignment permu-

tation &, evaluates the representation matrix elements for
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L and (i,3j)0 from knowledge of the spin functions, and cal-
culates the coefficients of the one- and two-electron inte-
grals occurring in the energy matrix element between two
SAAP's. This program was based on earlier, more complicated,
formulas than those given here. An updated version is being
written.

The Serber spin functions used with this program will
be discussed in the next chapter. As is mentioned there, it
is found more convenient to generate the spin functions and
then obtain the representation matrices from them, than to

calculate these matrices directly.

Derivation of the General

Energy Matrix Element Formula

We seek to evaluate the integral

E S <AB 6,1 [H|Alo 8 1]> = <010 [BIAIS 01>
= ™ Je@) <o, |BIR10,050>

where 77, psp, and the sum runs over all of S . Since the
Hamiltonian is assumed to contain no spin operators, space

and spin separate:

td
]

-1 NS A
(N1) 1§z3(1>) [Plg sa<t.lH]Po >

_ -1 NS ~
= (N!) ge(P) [P]Tr'a,p'B<H¢1TIP¢p> ' (20)
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where we have used the fact that H is Hermitian.
In terms of the one-electron Hamiltonians hi and the

electron repulsions gij' the N-electron Hamiltonian is

H = Z h, + 2 2 ..
it 157

In order to simplify the derivation that follows, we shall

write R
H = §<§ i3 ¢
in terms of the operators
H,, = (N-1) ‘(h.+h.) + g...
1] 13 13

Thus the Hamiltonian is written in terms of two-electron

operators. From (20), we have

_ -1 NS
E = (N!) §<§ ge(P)[P]#h'dB<Hij¢ﬂ|P¢p>, (21)

the sums on i and j being over electron labels, and the sum

on P being over the symmetric group, SN’ The rest of the deri-

vation is devoted to the simplification of this egquation.

Reduction of the sum over permutations

We assume that ¢ﬂ and ¢p are the following products of

orthonormal one-electron orbitals:

¢ﬂ(l’2"°"N) = ﬂl(l) eoe WN(N)I

¢p(1121--~lN) = pl(l) e pN(N).
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. . £ ied
We write (¢p)k,2,...,m to denote that part o ¢p occupi

by electrons k,%,...,m. For example, (q;p)k = Pp- Then

<Hij¢ﬂ,lP¢p> = <1Tll (P¢p)l>o -0<Hij1fi7fj l (P¢p)i'j>o o.(-n'Nl (P¢p)N>‘

This integral is zero unless <nkl(P¢p)k> = 1 for every k
other than i and j.

It is clear that not every P in (21) will make a nonzero
contribution to the i,j-term. Suppose that Qij is a permu-
tation aligning ¢p with ¢ﬁ in such a way that (Qijqbp)k:ﬂk

for every k other than i and j. Then

<Hij¢le

) = <Hi.ﬂ.w.[(Q..¢ ). .> F 0.

.. 0 > .
130 J 3 13 6 1.3

Furthermore, for any geminal permutation G in}ﬂp, G¢p=¢p and
<H;20.1Q;460,> = <H;j0 1Q;40,> # 0.

Thus the set of permutations {Qileng%} makes nonzero con-

tributions to the i,j-term in (21). We will show that other

permutations may do this.

The two orbitals from ¢p that are occupied in (Qij¢p)
by electrons i and j are uniquely determined by the condition
that <Hij¢ﬂlQij¢p> not vanish. Let these two orbitals be p_

and ps:

(Qij¢p)l = pr ’ (Qij¢p)j = pS.

This is not meant to suggest that r and s are uniguely deter-

mined by i and j. If Py or Ps is a double in ¢p, then there
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may be more than one possible value of r or s.

We see that (Qijép) is a rearrangement of ¢p that coin-

cides with ¢ﬁ except possibly in the orbitals occupied by

electrons 1 and j:

¢ = T, °°° T,

- "1 R LE T TS E T L

J+1

(Qi4300) = My =t T3 3"Pr Tie1 777 T3o17Ps T4l TUT Ty

In order to suggest this, we adopt the notation Q;g for Qij'

The reader should note that Q;g has the following properties:

(1) 30l = ot r,s) =0l ;
(ii) o7l =ol7 .

It is easy to see that not only

ij = <% ij -
<Hij¢lers¢p> = <dijwiwj|(Qrs¢p)i'j> = <Hijwiﬂj|prps> # 0,

but also

<H..6_|(i,3)-0*6 > = <E

ij'w rs'p ijwiwj’pspr> 7 0.

Clearly every permutation making a nonzero contribution to

the i,j-term of (21) is of the form
ij . v Al]
(Q.56) or [(1,3)Q 3GI, (22)

where G is a geminal permutation belonging to,bp.

The result is that the sum over N! permutations in (21)

reduces to a sum over just those permutations with the forms
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(22). It must be kept in mind that these permutations may

not all be distinct. The sets
ij . 2yoid
{Qrselcez%} and {(z,;)Qrselsaig} (23)

each consist of distinct permutations. We now investigate
the conditions under which the sets may overlap.
The two sets share an element if and only if there are
two geminal permutations G and G' in;ﬁp such that
. syolder = oif
(l,J)QrsG QrsG
il

ij, .
QS (r,s)G

1o ley .

But then _ ij\-1.ij.~—
(r,s) = (Q.3) "Q,5CG A

Thus {QigG} and {(i,j)QigG} = {Qig'(r,s)G} share an element
only if (r,s)sﬁp: in fact, then they share all their elements.
Therefore, the sum in (21) over all permutations re-

duces to a sum over the permutations in the two sets (23),
but this sum should be divided by two if r and s are in gemi-
nal positions and (I,S)ei% (i.e., if pr=ps). Using this re-

sult in (21), we obtain

=8(p_,p.) . . . -
e {E(Q;gG)[Q;2G1§5,58<Hij¢le;g¢p>

-1
E = (N!I) 2 )
§<§ Geé%

+ e[(1,3)00J61 11, QeI o, o (i 310k de >,

or
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- =3(p_,p_)
E= (N1)"1] ¥ 2 z se(Q ) } e(G) x
i<j Gsy
ij
x {10,261 <8y 57575 02>

H..ﬂ.ﬂ.lpspr>},

- ij
[(1,3)Q G]m p6< 1373

where G(Dr,ps) is the Kronecker delta.

This result can be simplified by noticing that

(i) for any permutation P, [PG] ,pB = [lea pB[G] 3,p8

because the matrices representing geminal permuta-

tions are diagonal;

.. p
(ii) Ggﬁs(G)[G] o8, 8 = 2P, from (11).
p

Thus we obtain

-S(p_,P_) .
E=Pmnilz T Seld) ~
i<j
ij
x {[Qrs]na 4g< 1jﬂiﬂjlprps>

- ij
[(i,3)0] ]m ss<Hi3Timy legp>t (24)

the sums running over electrons.

Reduction of the sum over electron pairs
Equation (24) contains redundancies. Suppose that T =Ty .

We make the following observations:

(i) It must be that k=il and (i,k) is a geminal

transposition.
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(ii) The integrals arising from the k,j-term in
(24) are <ijﬁkwj|prps> and <ijﬂkwj|pspr> ,
having the same values as <Hijwiwj|prps>
and <Hijwiﬂj|pspr> , the integrals arising
from the i,j-term. Orbitals o, and pg are
the same in each case.

(iii) The alignment permutation Qig arising from

the k,j-term is

1l

Q= w00l ot ,xeld,nh,

and since (i,k) is a geminal transposition

belonging to k%,,

kj, -kj.NS i3y s NS
S(Qrs)[Qrs]ﬁa,de = S(Qrs)[(l'k)]ﬂh,n& x
ij,Ns
[Qrs]ﬂh,ph
_ ij ij.NS
= e(Q.3) [Qrs]w’a,p's .
Similarly,
K3 .y ~kj. NS _ idy s sy mijyNS
e(Q 7)) [(k'j)Qrs]'ﬁ'a,p'B = e(Q.3) [(l'J)Qrs]ﬂ'a,p'B .

As a result, if WMETs the k,j-term in (24) makes the same
contribution as the i,j-term. Generalizing this, all cases

can be summarized as follows:



the number oi equal

if . is: and 7. is: contributions in
* 3 (24) is:
double same double 1
double different double 4
doublie single 2
single doudnle 2
single single 1

In general, the number of egual cecntributions is

where d‘j(¢~) is the number of doubles in o represented by
E 1i
the orbitals Ty and ..
J
Equation (24) is simplified by collecting together all

the equal terms, summing only over distinct contributions.

This is the same as summing -over different pairs of orbitals

in ¢_. Normalizing the SAAP's according to (i3), we have

~p (4 ;r,S) i3,
s=] 1225 Sc0l))
TyST,
i3
:»A13-NS .
X '{ S -z ) 14<h_ TaTe P o >
rsTUn,p8 Tijii r"s
- . l_,‘-l\.rs <E ;
- = JA<H. 'y > 2
n.\ll_,)QrSJ.ﬂ.'G"pa ;J“l‘_ipsp }I ( 5)
where
pli,3;xz,s) = [{p=-m)/21% ij(cb_l)—é(”.i,wj)—é(pr,ps).

The meaning of the sum needs ciarificatiocn. I ¢ﬁ=¢p’

the sum runs over every distinct pair of orbitals. For ex-

T.T,TL7 ,=aabc, the sum includes the orbital
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pairs (a,a), (a,b), (a,c), and (b,c). Each of these appears
once: doubles do not cause duplicate contributions. If o
and ¢p differ by two orkitals, T, and ﬂsawa in ¢ﬂ, then the
sum reduces to the one term with TET, and 1rj=1rB. In every
other term, the integrals are zero. If ¢ﬂ and ¢p differ by
one orbital, m_ in ¢ﬂ . then the sum is over every distinct
orbital pair in ¢ﬂ that contains Ty For example, if ¢ﬂ=aabc
and ¢p=aabd, then the sum is over the orbital pairs (a,c).,
(b,c) .

If m; Or m. is doubly-occupied in ¢ﬂ, there is an am-
biguity in the meanings of Hij and Qig, which are defined
in terms of electron labels. We adopt the following conven-
tion: whenever double occupancy in Ty or “j makes the choice
of i or j ambiguous, we choose the lower electron number.
If, for example, ¢w=aabc and ¢p=ddbc, so that ﬂi=ﬂj=a is the
only orbital pair occurring in the sum, i and j are unambig-
‘uously defined to be 1 and 2 (it does not matter which is
which) . On the other hand, if ¢W=aabc and ¢p=aabd, thep the
sum contains a term with Ti=a, wj=c, for which we choose
i=1l1 and not i=2.

It is not necessary to have a different alignment permu-
tation for each term of (25). Let & be a "maximal alignment"”
permutation for ¢n and ¢p which, when operating on ¢p' has
the property that orbitals common to ¢ﬂ and ép are occupied
by the same electrons in ¢w and G£¢p). This means that the

differing orbitals in ¢n and (L¢p) are also occupied by the



35

same electrons. The electrons occupying the differing orbi-

tals in ¢, are unambiguously defined by the convention adopt-

ed for i and j.

Any {, with this behavior will perform the duties of

every ng in the sum of (25). Thus we obtain a simpler result:

E=c(l) § J§2PW.diT.s)

TS
iv J

% {LL]ﬂa,pB Hijﬂiwjlprps>

- [, J)L]w g8<HijTims logp>} - (26)

The exponent of two appearing in this eguation is
p(i,j:xr,s) = [(p-m)/2] + dij(%) - G(Tri.frj) - S(Dr,ps),
a number apparently not symmetric in its arguments. However,

d--(¢,n.) =ﬂ_ﬁij ’

where Wij = P,g is the number of doubles in ¢ﬂ other than wi
and nj or the number of doubles in ¢p other than pr and ps.

Thus

P(i:jirrs) [(77/2) - (T~le/2) - é(ﬂl,wj)]

+ [(p/2) = (Bo/2) = 8(p.,0)]

[5655(0) = 8(my,m)]

1
+ [idrs(¢p) - 6(pr,ps)],
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or p(i,j;r,s) = p(i,3j) + p(x,s).,
where p(i,3) = [2 lj $.) = &(my 'y )1
and p(rls) = [2 rs(¢ ) - G(DIIOS)]o

This can be cast into a form more convenient for pro-

gramming by noticing that

P (L,3) _ {

n(wi,¢n)n(nj,¢w)}l/2
(148 (my 7)1 :

a result obtained by considering all possible cases:

. n(w.,9_)n(n.,9_J)\1/2
_ _ ol 9) { AL AR IR >

* J [l+6(wi,wj)]3
double same double 1-1=-3 weyt2=1/p
double different double 1 -0 =1  (4/1)+/% =2
double single z2-0=1 2/nt’? = 12
single double 2-0=z3 (7=
single single 0o-0=0 (/nt?=1

We obtain the final results

(i,3:x,s)
2P ] ’ = N(']ri,'h‘j;prrps)

{n(ﬂizqﬁﬂ_)n(?a‘j:(bw)n(pr:‘?p)n(ps:(?p) }1/2

3 3
[l+6(wi,wj)] [l+6(pr,ps)]
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1o

<Al¢_e_, ]IH[A[cbpep'BD

T T

S(JJ) z ZN(T" P rp Ip ) x

3
‘n’l<‘n'J

<H [p

X {[L]wa,ps 157475

- [(i, j)L] v, op< m.legp >} -

13 il

This is the general energy matrix element formula guoted in
(15) on page 20. It is also, of course, the matrix element
between SAAP's of any operator expressible as a sum of two-
electron operators.

The only properties of the spin eigenfunctions that
were used in deriving this equation were those of (10) and
(11). In other words, we have assumed that the spin function
in a SAAP is antisymmetric in every geminal pair which is a
double in the space product. We have also assumed that the
spin functions can be labelled eﬂa » indicating that the
functions are antisymmetric in the first 7 geminal pairs,
and symmetric in the next one. As we shall see, Serber spin
functions are not the only ones with these properties. It

will turn out, though, that Serber functions are particularly

easy to generate.
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Derivation of the Matrix Element Formula

in Specific Cases

The general formula derived above needs no discussion
when ¢ﬂ and ¢p differ by two orbitals. The sum reduces to
just one term, and no one-electron integrals:arise. One ob-
tains (18) immediately. The other two cases are more compli-

cated, however.

Case when gﬂ = gp

In this event, P=T ps=ﬂj, and the alignment permuta-

tion is & =I. Defining n(m;) = n(m;,6.) = n(Wi,¢p),

= ;_<§_{n(“i)n(“j)/[l+6(“i’“j)]3} x
ivj

T Iﬂ T.> = [(i,3)1% T, T, lT T, >}

X {G(WG,DB)<H-J i 3 wa pB 13 i3

Breaking the sum into terms with wj=ﬁi (when T is a double)
and terms with ﬂj>ﬁi , and substituting the definition of Hij'
one obtains

6(wa,ps)2 [n(n; )-1][(N <y fh] 7> + <ngwglglmgm>]

l

+
=t~

-<§T-[n(ﬂi)n(wj)] x
1 3]

{5(WG,DB){(N 1) [<ﬂ [h | my>+<m, ]h ]ﬁ >]4<a m {g[ﬂ .>}

. .y NS
[(lrj)lnh’p%<ﬁiﬂj]g]ﬂjﬂi>},
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where g=(e2/r12) and h is a one-electron Hamiltonian.

Since

y ) n(m; )n(ﬂ ) [<my IhIw >+<T, ]hlﬂ >] + 22 [n(m)=1l<m, [hln >
TT<1T
3 Ti

= (N-l)g n(m)<m; |hlm> ,
i
the final result is
E = 8(na,68) I {n(my)<m|hfms> + [n(m;)-ll<mm, |glm;m, >}
T,
i

+] InaGpalm) x

‘n’<7r
3

x La(na,ps)<w s lg|m. iT5> T [(i, j)]ﬂa g <™ Ig[w nl>}

where the sums run over distinct orbitals. This is the re-

sult quoted in (16), on page 22.

Case when I and Qp differ by one orbital

Suppose that the differing orbital is L in ¢ and o in

¢p. There is only one sum in the matrix element:

E = S(L) -‘ch N(Wule;po.lﬁj) X
J

x{ [LIND Tile > = [, LN , <H T lr >

o, pB uj g J J Te, P8 uj

where the sum is over distinct orbitals in ¢n that are also

in , and
:Ld)p
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. - {n(nu.¢ﬁ)n(nj,¢ﬂ)n(po,¢p)n(wj,¢p)}'1/2
:po, l'ﬂ'j

N(1T s = 3 3
H (145 (m, m3) ] [148 (o /m3) ]

J

This case is much more complex than the other two. If

wu or p, is a double, the sum includes a term with ﬂj equal

to nu or Pye It is possible that wp occurs in ¢p' and Py can

occur in ¢ﬂ. Altogether, there are twelve possible cases,

shown in Table 1.

Using [n(nu,¢ﬂ)—l] as a "delta function“ for double occu-

pancy in ©_ in ¢w’ the matrix element breaks down as follows:

u

E= eIl golln(m 0 )-112n(p,,0,)1%

1

x [ (N-1) <wulhlpc> + <wuwu[glpoﬂu>]

+ Inlpg,6,) =11 [2n(r 6,112

x[(N—l)-*<ﬂu[h[pc> + <ﬁup0[g]popc>]}

41/2
+el) ] Il e nlng,e)nlng,0 )nle 0 Y17 % x

™5
(#Tl'u,pc)

x {[L]N§ 1

e, ol (7L

<wulh]pc> + <nunjlg[pcwj>]

- [, LINE < nylalmie>t -

Ta,pB T u

The coefficient of <wulh|pc> in this equation contains the

quantity
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Table 1. Situations occurring when ¢ﬂ and ¢p differ by one-

b . b
wu “j Example P ”j Example
. a . a
(in ¢_) of ¢ (in ¢p) of ¢,
s s (u3/***m) S s (c3/**°m)
d s (mj/e*+m)
d = d (33/°*¢°m)
s d (w3j/e=+3jm) s da (63/+«+jm)
a # d (mj /e <+ jm)
a s (uj/eeeum) s s (gj/**eum)
d s (mj/ e« +um)
a = d (33/¢++um)
a # 4 (uj/ee-ujm s d (63/+«+ujm)
a # 4 (mj/+ e+ ujm)
ad = a (jj/...m) s s (O'j/ooom)
a s (m3j/ee-m)

@Notation: "d" means double, "s" means single.

bIn the examples, orbitals are represented by their sub-
scripts. The orbitals occupied by electrons p and j are
listed to the left of the slash. The differing orbital

is listed first.
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N E ta(r,60-11120005,0.) 17 2 In (o 0 ) -1 120 (m 46,012
- . 1/2 - 1/2
R CICAPLINE LG INY ;_ [a(my o) nlmy,0,01707
J

(#wu,od)

It can be seen from Table 1 that, when 7. does not equal nu
3

or oy’ it is a double or single in both ¢ﬁ and ¢p. Thus

i
) [n(ﬂj,¢ﬂ)n(wj,¢p)]*/2 = 2+ (number of doubles other than
T
J wu and pG)
(#wu,pc) + 1.{number of singles other than

and )
wp pc)

= number of electrons occupying orbitals

other than 7w and 5 .
I_H ’JO’

Becaus2 of this, the possible values cf N are:

7, (in ¢ﬂ) pc(in Qp) n
s S IC+0+ 1 (N=-1)] = (N-1)
s é [0+V2+V/2+ (N=-2)] = V/Z(K-1)
é s (V2+0+/2+ (N=2)] = /Z(N-1)
a & [2+2+ 2 (N=3)1 = 2(N-1)
. s . P e Neid (e , 1/2 -
The result is that 7t = (N-L'Ln(“p'¢ﬁ)n\pc'¢p)] , and so

the matrix element is
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- 1/2
E = [n(ru,%)n(pc,%)] e (L) x

{[L]ﬁl gi<m o> + [n(m o) -11<mm |glo m >

+ [n(pc,¢p)—1]<wupclglDcpc>}

+ %J n(ﬂ Mo ){{L]ﬂa 43S, T ]glp j
(. 10) RGNS LR N PIE >}}

This was the result quoteé in (17) on page 23.
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GENERATING SPIN EIGENFUNCTIONS

WITHOUT USING GROUP ALGEBRA THEORY

Construction of Spin Eigenfunctions

by Spin-Coupling Technigues

Yamanouchi-Kotani functions

The entire spin space for N electrons is spanned by the

ZN elementary spin product functions ek(NM):
N
&, (N,3) = [a(D)a(2)--a(N)];

{0, (,3-1)} = {[B(L)a(2) a1, ... , [a(Da(2)---8mM1};

N —3 e o
8, (N,-3) = [B(1)B(2)++-8(N)].

N

Of these, the products {ek(NM)lk=l,2,...,<§+M>} span the
2

part of the N-spin space that is specific to §z—eigenvalue M.
On the other hand, this subspace is also spanned by spin

eigenfunctions ej(NSM), where j and S take on all possible

values. Thus there is a transformation from the elementary

spin products to the spin eigenfunctions:

ej (NSM) = xg. 8, (M) Vi3 (NSM) . (27)

Here the product functions ek(NM) belong to the reducible
direct-product spin space for N fermions. The coeificients

ij must be chosen in a special way that forces ej(NSM) into
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a subspace for the irreducible spin representation defined
by N and S.

This is special case of the vector-coupling problem
solved by Wigner (1931). The solution is given stepwise, by
coupling spins one at a time. One starts with the spin of a
sincgle electron, couples it to the spin of another, and pro-
ceeds by coupling the spin of the Nth electron to the re-
sultant spin of the first (N-1). At each stage, there are
two ways in which one can obtain spin S for N electrons.

Pictorially,

s'=5-1/2

This sort of spin-coupling picture is called a branching dia-

gram, and the two routes shown correspond to the two egquations

S~-M+1

_ (N-1 S+i M~
ej (NSM) = 55+ ej (N l,sﬂ'z,M 2) «a (N)

”S+M+1 1 1 -

= V§i’§ -1,5-= M-%
ej (NSM) = 35 e] (N i,s ZIM E) ea (N)

S-M 1 1
+ \55— ej(N-l,S-i,M-%--z-)-B(N). (28b)
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The coefficients appearing here are examples of Clebsch-
Gordan or Wigner coefficients, which guarantee that the
6. (NSM) form an orthonormal basis for an irreducible repre-
sentation of Sx-

In applying these equations recursively for given N, S,
and M, cne makes a spin-coupling chcice at each stage - a
choice between Equations (28a) and (28b). In the end, there
are a number of ways in which N one-electron spins can be
coupled so that the resultant spin is S. Each of these "spin-
coupling schemes" is labelled by a value of the subscript j
in (28). The schemes can be represented pictorially as routes
on an N-electron branching diagram like the one given in Fig-
ure 1, where we have givgn at each intersection the number

of spin functions resulting for the corresponding values of N

and S. This number, which is independent of M, is

d(NS) = {28+1) (N1) _ (2s5+1) (N+l)

(§-:-s+1) : (§—s> U (N+1) I-;--s

Thus, for example, there are three spin eigenfunctions for

N=4, S=1, for each vaiue of M.

Since each N-electron spin function is derived from a
chain of predecessors, this procedure is often called a “"gen-
ealogical construction". It was introduced by Yamanouchi
(1936, 1937, 1938), and a full account has been given by
Kotani et al. (1955). We shall hereafter refer to spin func-

tions coanstructed according to (28) as Yamanouchi-Kotani (¥K)



5/2 1
3/2

1/2

/
N\
NS

Figure 1. Yamanouchi-Kotani branching diagram

spin functions, and to Figure 1 as a YK branching diagram.

The YK functions are a basis for a very special orthogo-
nal representation of SN. Not only are the matrices represent-
ing permutations in SN fully reduced, but it will be observed
from (28) that the representation of the subgroup SN-l is also
reduced. In fact, the recursive nature of these equations has
the result that the representations of the subgroups sN-l'

eees S, are all fully reduced. The YK spin representa-

SN-27 1
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tion is said to be adapted to the sequence

Sy Sy-1r Sy-2v -ccv 51

of nested symmetric groups (Klein, Carlisle, and Matsen,

1970) . We shall return to this point later.

Serber functions

In the last chapter, we found it useful to have orthogo-
nal eigenfunctions of §2 and §z that were simultaneously
eigenfunctions of all the geminal spin operators §2(2u-l,2u),
where u labels a geminal pair of electrons. Such functions
were first obtained by Serber (1934a, 1934b), using a genea-
logical procedure in which spins were coupled two at a time.

Assume for the moment that N=2n is even. Then, defining

geminal spin functions wp(su,mu) for the uth geminal pair,

wu(l,l) = a(2u-1)a{2u),
w, (1,0) = [a(2u-1)8(2p)+B(2u-1)a(2u)1/72,
3 (29)
wo(1,-1)= 8(2u-1)8(2u),
w (0,0) = [a(2p=-1) 8(2u) =B (2u-1)a (2u) 1 /72,

it is possible to make 2n-electron spin eigenfunctions from

these:

ewa(NSM) =3 cﬁa(ml,...,mn)[wl(sl,ml) cee wn(sn,mn)].(BO)

{mu}

Here the sum runs over all choices of My Myyevs My such that

Im =M. Since each su is fixed, the functions (30) will be
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automatically eigenfunctions of §2(2u—l,2u) for each u. The

subscript "#" on eﬂa(NSM) indicates that
S|y =S, =M= ... =Sﬂ=mﬁ=°-

Thus eﬂa(NSM) is antisymmetric under the geminal transposi-
tions of ;éjﬂ .

Each geminal spin function wﬁ(su,mu) belongs to an
irreducible representation T(sp) for two electrons, so

ewa(NSM) automatically belongs tc the space for the direct-

product representation

The coefficients must be chosen in a special way that forces
era(NSM) into the irreducible space defined by N and S.
i
As before, the sclution is given stepwise, in this case

by coupling spins two at a time:

e_ (NS¥) =} w_ (s',s_ ,SiM-m ,m ,M) x

™ o T
n

II.’— ' V—* L ]
x eﬁa\m 2,s',M mn) wn(sn,mn) (31)

Here e7a(N—2,s',M—mq) is an (N-2)-electron spin function for
[] 4
spin s'. Since s, can be 0 or 1, s' can be S+1, S, or S-1.
The numbers W_(s',s_,S;M-n_,m_,M) are the Wigner coeffi-
T n n’"n
cients.

There are four equations like (31), corresponding to the

four spin-coupling ("branching") routes shown in the follow-
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ing diagram:

The ten Wigner coefficients involved are available in stand-

ard references (Wigner, 1859, P. 193; Condon and Shortley,

1951, p. 76).
The different subscripts ma occurring in (31) corre-

sponé to different routes on a Serber branching diagram like
that in Figure 2. As in the previous case, the values of d(NS)

intersection.

are shown at each
functions are a

It follows from (31) that Serber spin
a that is adapted to the se-

basis for a representation of SV

guence
> e o7 82

Snr Sy-27 Sy-z’

of nested symmetric groups. It also follows from this equa-
tion that the representation of every geminal two-electron

subgroup is fully reduced. These facts will prove useful
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S

[

3 1

2 lj::><<ii - 20

1 b ees——ci S ——l * R ———{ - s —a * 1)
4 >\\

0! 1 2 > 5 14

0 2 4 6 8 10 =N

Figure 2. Sexber branching diagram for states leading to

N=10, s=1
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later on.

"Serber~type" functions for odd N can be made by coupling
the spin of the Nth electron to Serber functions. for N'=N-1.

The resulting functions will then have Serber-type behavior

up to electron N'.

Comparison of YK and Serber functions
<) - XD

The cdifferences between YK and Serber spin functions
are not made obvious by the branching diagrams, Figures 1 and
2. The easiest way to reveal the differences is to examine
the functions resulting from both genealogical schemes when,
say, N=4, S=1, M=0. We use the notation introduced previous-
ly, and show with each function its branching route.

The Y¥YX functions turn out to be

~

: 91(410) = (aB8-3a) (aB+B8a) /2;
//AV/ : 62(410) = {ZaaSS—ZBBaa-(aB+8a)(aB-Ba)]/2/3;
: 6,(410) = [caBB-5Raa+{ad3+Ba) (a8~3a)]/V6.

3

On the other hand, the Serber functions are

611(410) = (aB-B8a) (aB+Ba) /2;

\ A

901(410) = (aaB8-B8B8aa)/vV2;
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+0
7/ : 902(410) = (aB+Ba)(aB—Ba)/2.

The Serber functions are symmetric or antisymmetric in
each geminal pair: they are simultaneous eigenfunctions of
A2 ~ 2 ,'\2 £ . S
s“, Sz, él, and s, . The YK functions are less simple. The
first one happens to be the same as the Serber function ell
because its branching diagram unambiguously fixes the spin
of the first geminal pair to be zero. Since the total spin
is one, the spin of the second pair must be 52=l' In the
other two YK functions, the spin of the first geminal pair is
unambiguously sl=l, but the second pair has no definite spin.
In cther words, the functions 8, and 6, are simultaneous

~
. _ : - 22 A ~2 N ~2 .

eigenfunctions of S, Sz, and Sy but not of S, This is be-
cause either s.,=1 orx 32=0 can couplie with sl=l to give S=1.

2
Rather than containing a pure contribution from sz=l or 52=0,
the YK functions 62 and 63 contain mixtures of both.
However, these functions can be labelled with the sub-
script "4", just as the Serber ifunctions were. One merely
defines the YK function Yﬂa(NSM) tc be one for which the

branching route has the form /A\ for the first 7 geminal

pairs, then turns upward for the next. In the example above,

8, =Y 6, =Y

The conseguence of this notation is that the ¥K function

Yﬁa and the Serber function era will both be antisymmetric
]

in the first 7 geminal pairs, symmetric in the next, then
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bear no fixed relation in the rest.

As was pointed out in the last chapter, this is the only
behavior required of spin functions in the SAAP formalism.
Either YK or Serber functions can be used, the choice depend-

ing on convenience in generating the functions.

Practicality of spin-coupling technigues

The genealogical construction of spin functions is in-
convenient because it is recursive. In order to make an N-
electron spin function, one must first generate every pred-
ecessor 1in the genealogical scheme. It can be seen from the
branching diagrams that the complexity of the problem in-
creases rapidly with N.

In order to make the three YK functions for N=4, S=1,
M=0, one must generate the following fifteen functions:

N S functions M values reguired total functions
for each M ‘ '

1 172 1 +1/2, -1/2 2
2 0 1 1
2 1 1 1, 0, -1 3
3 1/2 2 +1/2, -1/2 4
3 3/2 1 +1/2, -1/2 2
4 1 3 0 3
15

The calculations are so simple that this is no problem. But
there are 90 spin functions for N=10, S=1, M=0. In oxrder to

get them, one must generate 660 functions altogether, some
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containing as many as 252 product functions.

At least one computer program is available for YK func-
tions (Mattheiss, 1958), but the genealogical construction
of spin functions is practical only for small N. In other

cases, the programs regquire too much storage.
Lowdin's Projection Operators

By inverting (27), one can express any elementary spin
product function ek(NM) in terms of all the spin eigenfunc-

tions 6, (NSM) having the same N and M:

o

Gk(NM) = g % ej(NSM)cjk(NSM). (32)

It is apparent that the gquantity

) 6. (NSM) ¢y (NSM) (33)

3

k

is the prcijection oi the spin product ek(NM) on the subspace

for spin-eigenvalue S, a subspace spanned by the vectors

led the S-component

b2

{e. (XsM) |all j}. This cuantity is also ca
of Gk(NM). Eguation (32} says that, in general, an elementary

spin product function mey contain components for every value

Lowéin (1955b, 1960, 1S64) has introduced the operator

- A2 - -
-~ p H S - SI /Sl‘.:' H
6 = 1 i | el (34)
S' is(s+l)-s'(s'+1) ] ,
{(#8)
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which, when operating on ek(NMj, successively annihilates
every spin-component except the one shown in (33). Thus 63
projects an eigenfunction of §2 from any spin prqduct func-
tion.

The application of (34) is straightforward, since the
Dirac identity gives (McWeeny and Sutcliffe, 1969)

a2 _ 2. N, . . N
S%e, (M) = [(M"+3)I + uzv v (NMK) * (1,v) 1€, (3M) ,

where I is the identity permutation, (u,v) is the transpo-

sition interchanging electrons u and v, and

€uv(NMk) = {2} if the spins of u and v

3\

the same} in ek(NM).

are {different

~

If O4 is applied to all the spin products for given N
and M, the results will be redundant, but enough linearly
independent sp;n eigenfunctions will be generated to span the
spin-space for N and S. Lowdin (1964) has developed a pro-
cedure for choosing spin products that lead to independent
eigenfunctions. A computer program is available (Rotenberg,
1963).

The resulting functions can be orthogonalized without
difficulty. In orxrdexr to obtain the sort of spin functions
which are useful in the SAAP formalism, however, one must
transform the Léwdin spin functicns by diagonalizing the

representation matrices for geminal transpositions. While
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this could be done with high-~speed computers, it would not

be as practical as other methods to be discussed.
Wigner Operators

There are several group-~theoretical approaches to spin

functions. The Wigner shift operators (Wigner, 1931, 1959)

_ -1,NS
@a(NSB) = [d(NS)/Nllg[P ]Ba P, (35)

with B fixed, will generate from a spih product 4 (NS) spin
eigenfunctions spanning the spin-space for N and S. Different
values of B produce different bases for the same representa-
tion. Setting a=B produces a Wigner projection operator,
which can be shown to be idempotent.

In order to make’spin functions with these operators,
it is necessary to know the N! spin representation matrices
[P]NS, for every P in SN. These can all be generated from
the (N~1) matrices representing the elementary transpositions
(k-1,k), where k runs from 2 to N.

A spin-coupling procedure for evaluating these matrices
was given by Yamanouchi (1936, 1937) and discussed by Kotani
et al. (1955). The method was extended to the Serber spin
representation by Mattheiss (1959), following a scheme sug-
gested by Corson (1951) . These procedures are recursive, and
suffer from the disadvantages mentioned earlier.

It so happens (Pauncz, 1967) that the YK spin represen-

tation is the same as Young's orthogonal representation
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(Young, 1932; Thrall, 1941), obtained by nonphysical argu-
ments. Young's analysis leads to uséful rules for evaluating
the representation matrices for transpositions (Rutherford,
1948; Goddard, 1967a; Coleman, 1968) . This method is quite
practical.

It is possible to get along without the representation
matrices. Setting B=a in (35) and summing over o, one obtains

the new operator

@, (¥s) = [a(ns) /N1l ] xS (p)>p, (36)
P

where xNS(P) is the character of the permutation ? in the
representation given by the matrices [P]NS. This operator,
when applied to a spin product, does not in general produce
one of the spin eigenfunctions ea(NSM), but some function
in the (N,S)-space spanned by them. Thus (36) is the group-
theoretical equivalent of Ldwdin's operator.

The fly in the ointment is that, for ten electrons,
there are 10! = 3,628,800 terms in the sum of (35) or (36).
It would be extremely time-consuming to generate this many
representation matrices from the nine elementary matrices.
Even to get the characters required by (36) would be ineffi-
cient compared to Loéwdin's method. The operators (35) and
(36) have been used to make spin functions for small N
(Smith and Harris, 1967; Harris, 1967), but they are not

practical for many systems of interest.
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‘Young's theory of the symmetric group leads to a more
viable approach to projection operators through group theory.
Only some permutations are required in projectors made in this
way, and the calculations do not become so unwieldy. A dis-
cussion and further extension of this method is presented in

the next chapter.

Serber Spin Functions

by Diagonalization of §2

The first new method suggested here for the construc-
tion of Serber spin functions is largely numerical in charac-

ter.

We seek to construct spin eigenfunctions e“a(NSM) having

the following properties:

§2

, 2
+1 (NSM) :
Gﬂa(NSM) hTs (s+ )eﬂa NSM) ; (37)

S & (NSM)
Z T

hM eﬁa(NSM); (38)

geﬂa(NSM) = iewa(NSM) for every geminal

transposition g in Syi (39)

geﬂa(NSM) '-eﬂa(NSM) for every geminal

transposition g in l%. (40)

Properties (39) and (40) can be reworded: era(NSM) is to be
an eigenfunction of every geminal spin operator §2(2u-1,2u),

and in particular, its eigenvalue under such an operator is
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to be zero when u<w.

It is natural to think of such functions as linear com-
binations of products, not of one-electron spin functions o

and B, but of the geminal spin functions introduced in (29):

o, = w, (0,00 = [a(2u-1)8(2w) - B(2u-1ya(2u)1/v2,

Tp = WL (l,l) = G(ZU-l)a(ZU) ’ (41)
T, = w,(1,0) = [a(2u-1)8(2n) + B(2u-1)a(2u) 1/v2,

1, = wu(l'—l) = 8(2u-1)8{2u).

For the moment we consider only the case when N=2n is

even. The product
n

WM(sl"°"sn;ml"°"mh) = J=£ wu(su,mu), (42)

where M=Zmu, we shall call a geminal spin product. Obviously,

each geminal spin product WM is an eigenfunction of the gem-

inal spin operators §2(2u-l,2u) and §z(2u—l,2u), for every u.
The spin eigenfunction ewa(NSM)’ which is some linear

combination

e__(NsM) = 7§
S

NSM
ra { g c ({su},{mu}) x

5 F u
uj 1 uf
X WM(sl,...,sn;ml,...,mn), (43)

where M=Im is fixed, is itself an eigenfunction of the
operators §2(2u-1,2u). Thus e__ (NSM) contains only those gem-
inal spin products having the same geminal pair-spins:

each linear combination (43) has {51’52""’sn} fixed.
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We say that each linear combination has a certain "pair-spin
combination", or "PSC". Each geminal pair spin is called a
“PS". Furtﬁermore, the subscript "r" on eﬂa(NSM) means that
every Wy in (43) has su=0 for p=1,2,...,7. This follows from
(40) .
Now, given that the linear combinations (43), for fixed

N, S, M, and 7w, are subject to the three conditions

(i) the PSC is fixed;

(ii) sp=0 for ugrw;

iii) Zmu=M;
only one moxre condition is reguired to produce the eﬁa(NSM):

. . . . . 22 . .
the linear combinations must diagonalize the S -matrix. This,

of course, forces the linear combinations to be eigenfunc-
. a2
tions of S™.

Serber spin functions can be made, then, by the very
simple algorithm shown in Figure 3. The algorithm is so sim-
ple that only one part of it requires further explanation -

C s 2 3 .- .
the calculation of the S"-matrix over geminal spin products.

The N-electron operators §+, §z’ and §2 are related by

A A _ ~ —'A ~ oA _ A2 I\2 N Ay
Ss, = (s, 1Sy)(sx+1sy) =8, + sy + 1[sx,sy1
_ 2 _ A2 - A
= § S, - S,
"2 _ A A ~ S
or ST =885+ S_(s_+1).
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Determine all PSC's having the properties

(i) su=0 for pu=1,2,...,T;

(ii) T s >|M].
p=1 ¥

For each of these, do the following:

construct every possible gem-
inal spin product having Xmu=M;

. . 22 s s
calculate the S " -matrix be-
tween these geminal spin prod-

ucts;
. . . ~2 .
diagonalize this S"-matrix;

keep only those eigenvectors
having the desired eigenvalue
S.

Figure 3. Algorithm for construction of Serber spin
functions with eigenvalues S, M, for use with

a space product function hawving 7 doubles
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" n
Wwriting S, = ] §,(u) in terms of the geminal pairs,
s2=6_(5+1) + J a_(wa (w + ] ] [B_(08, (W+E_(WE (1.

M H<v

The calculation of the §2—matrix is trivial when the operator
is written in this form. The action of the second term on the

geminal spin functions (41) is given by

wu(su,mu) [S_(u)§+(u)wu(su,mu)]
v -0
T 0
T 21
I 27

Thus

Y S_(Ws, Wy, = 2[n(T) + n(T)IW, ,
H

where n(t), for example, is the number of times that w(l,0)=7

occurs in WM.

Since the geminal spin products (42) are orthogonal,
the §2-matrix elements between such products (with M fixed)

are given by
<y |8%w,> = {MOerl) + 2[n(0)+n(D)1} 8(Wy , W

+ <Wyl §<§ [S_() 8, (+E_(WE, (1) IW> «
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The contribution in {}-brackets is zero unless Wﬁ = WM. On
the other hand, the last term is zero unless WM and Wﬁ differ
in two geminal pairs, say those numbered ¢ and A. In that
case, the last term is [note that all geminal spins su are

the same in any two products Wﬁ and Wy in (43)]

<w!(s miwi(s,,mi)[[S_(x) 8, (MW+5_(M)8, () 1w (s /m )w, (s,,m)>

This integral is zero unless m;+mi = mK+mA. In fact, of 256
elements in the matrix of such integrals, only eight are non-
zero: see rFigure 4.

The algorithm of Figure 3 has been programmed in Fortran
for the IBM System 360/65, and the listing is given in Appen-
dix C. The speed of this program is limited by the matrix
diagonalization procedure. The one listed, EIGEN, 1s an IBM
Jacobli scheme improved by R. C. Raffenetti, D. M. Silver,
and B. F. Sullivan, of the Theoretical Chemistry Group at
Iowa State University, Ames, Iowa. The time required by EIGEN
to produce double-precision eigenvectors of a matrix goes
up roughly as the cube of the dimension: in this case, as the
cube of the number of geminal spin products for a given PSC.
EIGEN will handle a 10x10 case in less than (0.5 second, and
a 25x25 in less than seven seconds.

As a practical matter, one is interested in using the

spin functions to calculate the representation matrices of

the permutations in the symmetric group. Such matrices are
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o6 6T 0T 0T IO TT TT 1T TO TT TT TT IO IT IT IT

e m e e o e 2 o o e o e e e e o o o i i o o e o e e o = e o - o= ——
! 1 1
1 i 1
| 1 1
| l i
i 1 §
: ! i
i i
1 1 2 i
i i 1
1 1 2 1
] i !
_______________ I A SRS
i i I
i | i
! 1 1
I l i
| : !
i 2 i i
! ! 1
! 2 | ! 2
1 } }
} i
1 | i 2
i i 1
e ——————— e e it e e e + - e ———————— -
{
1
1
i
2 1
i
1
i
1
!
1

Figure 4. Matrix of elements

<w;wil[s_(K)s+(A)+s_(A)s+(K)]WKwk>

(All elements not given explicitly are zero.)
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needed for the evaluation of expectation values in terms of
wave functions containing the spin functions.

The N! permutations belonging to SN are products of the
(N-1) elementary transpositions tk=(k-l,k), where k runs from
2 to N. In practical applications, one therefore generates
only the tk—matrices from the spin functions.

A program has been written which generates all Serber
spin functions for given N, S, and M, and then evaluates all

of the tk—matrices from them. Sample running times in single

precision are:

N S M spin functions elem. matrices Cigezime
4 1 1 3 3 0.4
£ 00 2 3 0.3
6 3 3 1 5 0.2
6 2 2 5 5 3.0
6 21 > 5 14.0
¢ 20 > > 23.7
¢t ¢ 2 5 31.1
6 1 0 9 5 51.9

These running times reflect the fact that the complexity of
spin functions depends on [M].

An application of these techniques is the program to
generate simultaneous eigenfunctions of spin and orbital
angular momentum, listed in Appendix E. Subprograms SSQEIG
and SEIGEN generate Serber spin functions, and FPMAT is used

to evaluate permutation matrices. The operation of this
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program is explained in the last chapter.

The preceding discussion leads to the following conclu-
sions. The most convenient computer technique for obtaining
Serber spin representation matrices is to generate spin func-
tions first, and obtain the matrices from them. This requires
many arithmetical operations, but most involve only integer
arithmetic, and are quickly done. Attempts to obtain matrices
directly from genealogical schemes usually reguire a very
large amount of storage when more than a few electrons are
involved. The exception is that YK matrices may be obtained
conveniently from Young tableaux. This approach is useful

when spin functions are not required.
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CONSTRUCTION OF SPIN EIGENFUNCTIONS

BY GROUP-ALGEBRAIC TECHNIQUES

We have described how the group-theoretical Wigner op-
erators can be used to generate spin functions. It seems
reasonable to expect that group theory might lead to simpler
expressions for such operators, ones which do not involve
sums over every group element. We present in this chapter
a new method to accomplish this, a method by which YK and
Serber spin functions can be generated directly from Young
tableaux without the need to evaluate representation matrices.
As a bonus, this approach alsc gives directly the dual space
functions.

The operators we shall describe form matric bases in the
symmetric group algebra. The theory behind them is abstract
and relatively unfamiliar to chemists. For this reason, we
shall begin by outlining the application of group algebra
theory to the symmetric group. The reader seeking a more
complete treatment is referred elsewhere (Weyl, 1931; wvan
der Waerden, 1950; Jonnson, 1960; Boerner, 1963; Lowdin,
1967; Poshusta, 1969; Matsen, 1970; Salmon, 1971).

Despite the abstractness of the theory, the operators

obtained turn out to be "conceptualizable" and easy to apply.
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The Group Algebra for SN;

the Regular Representation

While the method of the last section dealt with linear
combinations of spin product functions, we now construct
linear combinations of permutations which, when operating

on a single product function, produce basis functions for

irreducible representations of Sy~
A

Two such operators are familiar. The antisymmetrizer,

A=@an"t71em@e,
P

has already been introduced, and there is, similarly, a

symmetrizexr:

v RN

These operators are idempotent and are projection operators
for the antisymmetric and symmetric representations, respec-
tively.

For N>2, however, there are other irreducible represen-
tations. This chapter is concerned with the construction of
projectors for all of the irreducible representations. In

group-theoretical language, we seek a way to completely re-

duce the regular representation of EN' Let us start with the

functional approach of the last chapter, and show how it
leads to a powerful abstract method for this reduction.

Consider an N-electron function £, such that the Ni
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functions
f(llzl"'lN)l f(zrlt---lN)l see f(Nr3lll---)l LI

are all distinct. It is convenient to iabel these functions
with the permutations that generate them from £(1,2,...,N):

let fI(l,Z,...,N) = £{1,2,...,N) and, if

[ 23 ... N )
\P;PoP3--- Py/ #

let fP(l,z,...,N) = f(pl,pz,...,pN) = P£(%1,2,...,N), etc.

The set {fp} is a basis for an important representation

of S,.: for every P and fQ, there is in the set an fR such

that
P-fQ = fR, where R = PQ.
In other words,
'f*':v? £ it T =
P 5 é .SQ(P)~S with LSQ(P) GSR. (44)

It is easy to show that the matrices T'(P) multiply like

the permutations. They constitute the regular representation

of SN’ which is shown in elementary texts to be reducible

and to contain every distinct (i.e., nonegquivalent) irrep

of SN' It should be noted that the permutations piay a dual

role in the regular representation: thev are both the trans-
formations and the labels for the basis functions.

The N!-dimensional linear space F(SN) spanned by the fP
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is said to be the carrier space for the regular representa-

tion. It consists of every linear combination

of the basis functions fP.

X(1,2,...,N) = ] x(P)£,(1,2,...,N)
PeS

N

Since the regular representation is reducible, its car-

rier space F(SN) is decomposable into the direct sum of sub-

spaces invariant and irreducible with respect to the opera-

tions of the group. Since the regular representation contains

every noneguivalent irrep, F(SV) contains a carrier space for

evervy distinct irrep.

The meaning of these terms can be clarified through an

example. Suppose that £(1,2,3)

F(S3) consists of every linear

X(1,2,3)

It turns out

direct sum of

subspace 1,

subspace

subspace

subspace

2,

X.abc + x.bac + X
bo 2aC 3

1

that this linear

= a{l)b(2)c(3) = abc. Then

combination of the form

cba + x4acb + xscab + x6bca.

space can be decomposed as the

the following four irreducible subspaces:

spannec o 0..=
Pans Y il

(6,.=
spanned by { 21
l622=
{
spanned by {
\&35=

spanned by e4l=

63:%

abc+bac+cba+acb+cabt+bea;
2abc+2bac-cba-bca-cab~ach,
ackb+bca-cab-cba;
acb-bca+cab-cba,

2abc-2bac+cba-bca-cab+acb;

abc-bac~cba-acb+cab+bca.
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By "direct sum" is meant the following:

(i) Every function in F(S3) can be written as a

sum of functions in the subspaces.

(ii) The subspaces share no functions other than
the null - they are independent. Here, in fact,

their basis functions are all orthogonal.

The subspaces are said to be "invariant" under SN because
the result of operating with a permutation on a vector from
one of the subspaces is again a vector in that subspace. For

example,

(1,2)8,;, = 857, (1,2)8,, = -6,

R - &
(2,3)8,; = 5(=6,7%36,5) s (2,3)8,, = 5(6,;+6,,) .

The invariant subspaces are "minimal" or "irreducible" be-
cause they cannot be decomposed into smaller invariant sub-
spaces. Here, in fact, two oi the subspaces are one-dimension-
al.

The carrier space F(SN) for the regular representation
of SN is decomposed by finding projection operators for the
various minimal invariant subspaces. To this end, we recast
the linear function space F(SN) in terms of operators:
an element

X(1,2,...,N) = 7 x(P)£,(1,2,...,N)
PgSN

is written in the form



-
W

X(1,2,...,N) = [} x(P)P) £(1,2,...,N).

P&:Sl\.‘r

From this point of view, each element X(1,2,...,N) in F(SN)
corresponds to an operator like [Ix(P)P]. The "primitive
function" £(1,2,...,N) is the samz in every case, and is thus
superfluous. The properties of F(SN) can be discussed without
mentioning the primitive function.

For this reason, the space F(SN) of functions can be
replaced by the eguivalent linear space A(SN), consisting
of all operators of the form

X = ) x(@)pP.
Pesy

The space A(SN) is called the group algebra of SN' It is to

be considered not only as a set of operators, but also as a
linear vector space spanned by the group elements.

Like F(SN), A(SN)'is a carrier space for the regular
representation of Sy Finding operator bases for minimal
invariant subspaces of A(SN) corresponds to finding basis
functions for minimal invariant subspaces of F(SN), and in
this sense is eguivalent to finding basis functions for
irreps of Sy -

We shall see, for example, that a basis for a certain

minimal invariant subspace of A(S4) consists of the operators
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©; = 512/\34' ¢,

o, = 8,,8,,+(3,4)-@, (45)
03 =A;,95,°(2,3,4)-C,
where Si X and.Ai x are the symmetrizer and antisym-

metrizer on the numbers i,...,k, respectively, and

¢ =Al4§123’414’434512 y

These operators, applied to the spin primitive

aBaf = a(l)B(2)a(3)8(4), generate the basis functions

e, = {aB+Ba) (cB-Ba),
6, = aaBl - B8Baa, (46)
e, = (aB—Ba) (aB+Ba) .

Comparison with (9) shows that these are Serbker spin func-
tions for N=4, S=1, M=0. Either the operators of (45) or the
functions of (46) can be thought of as a basis for the corre-
sponding irrep of SN'

Just as the group algebra is an abstraction from the
function space F(SN), the regular representation has a more
abstract meaning in terms of A(SN). Equation (44) defines a
matrix representative for each group element when the basis
in A(SN) is choser to be those same group elements. Again,

the permutations in SN play the dual role of transformations
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and basis elements. This implies a dual role for the group

algebra.

Since the regular representation defines a matrix

'(P) «— P

representing each permutation, it automatically defines a

matrix

fifu

} x(P)T(P)
P

r(x)

representing each X=Ix(P)P in A(SN). This is the regular

representation of the group algebra, a generalization of the

regular representation ofi the group. Hereafter, we shall
understancd the word "representation" to mean a representation
of A(SN).

In the regular representation, then, the group algebra
is to be considered as the set of operators being represented
and also as the carrier space for the representation. The
basis vectors in the carrier space are taken to be the permu-
tations P. The representation matrices T (X) for each X in
A(SN) are related to the basis vectors P by the equations.

= T !
5N
In these equations, the basis vectors of the carrier space

are being transformed according to left-multiplications by

elements of A(SN).
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Minimal Left Ideals,
Primitive Idempotents,

and Matric Bases

Carrier spaces of representations into which the regu-
lar representation reduces are subspaces of A(SN) that are
invariant under left-multiplications by group algebra ele-
ments. Given an element U in A(SN), it is easy to see that

the set of elements

L = {XU|XeA(s)}

is such a subspace. The set L is said to be the left ideal
generated by U, and U is called its generator. Every sub-
space of A(SN) that is invariant under all left-multiplica-
tions 1is a left ideal. Left ideals are thus carrier spaces
for the representations into which the regular representa-
tion reduces.

Corresponding to the reduction of the regular represen-

tation, its carrier space A(SN) decomposes as the direct sum

of certain left ideals: we write
A(SN)=L19.L.2€3...6Lk.

It may be that a left ideal Li contains left ideals of
smaller dimension, in which case Ls itself decomposes. By
carrying this process as far as it will go, A(SN) can be

written as the direct sum of certain minimal left ideals,
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each of which is nondecomposable, or irreducible. The minimal

left ideals into which A(SW) decomposes are carrier spaces

for the irreducible representations contained in the regular

. . . o
representation. As is well-known, the irrep "oa" occurs 4

times in the regular representation if it has dimension a”.
similarly, 4% equivalent minimal left ideals {Lgli=l,2,...,da}

for irrep a2 occur in the decomposition of A(SN). We write

_ a o o
A(sy) = E(Ll ®L, & ... 8 Lda) ,

in which the sums are direct.
We wish to obtain operator bases for these minimal left
ideals, for such operators can be used to generate basis func-

tions for the irreps.

It can be shown that every left ideal contains at least

one idempotent generator, e, called a generating unit. A gen-

erating unit for a minimal left ideal is called a primitive

idempotent. It turns out that an element e is a primitive

idempotent if and only if

eXe = A{X)e, (47)
where X is anv element of A(SN) and X (X) is a number that de-
pends on X. Obviously, if e is to be idempotent, it must be
that A(I)=1. Property (47) is used to identify generating

units for irreducible carrier spaces.

Idempotents that generate different minimal left ideals

occurring in the decomposition of A(SN) annihilate each other.
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1f 1% and LQ are generated by idempotents ei and e?, respec-

tively, it can be shown that

o
e. 3
1

e = eBe? = 5%Bs 2 (48)
5 T 3% ij

These idempotents are the diagonal elements {eg=e§i} of

a set

R .. o
{e’.|ail a; i,3=1,2,...,47}

i3
of operators in A(SN) naving the multiplicative property

a B _ .¢B a
e 8§78 e, - (49)

e. . = .
ij mn Jm

2 N! elements {eg.}

This property guarantees that the (&%) 5

o

are linearly independent. For if

I3) c(a;i,j)ef:'j =0,
aij
then from (49),

B .TTT ain.d <3
ery 11, claii,ije
ai3

or c(f;k,n) =0

for any B, kK, ana =n.

Like the permutations, then, the e.j form a basis Ior

the whole group algebra, and there is a transfiormation between

the two basis sets:
P = 7a a
E gz (Pljseiy - (50)

i

Ul

- = . - . . o —erm . R
Because of this and the fact that the eij multiply like the
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"elementary matrices" e.. = (8..), they are given the name

13 ij

matric basis.

It is important to note that e, = eg

means that the subset

8% = {&%.]i=1,2,...,8%}

)
")
(]

of the matric basis belongs to the minimal left ideal gener-
ated by e%. since the matric basis elements are linearly in-

dependent, BY constitutes 2 basis for the jth minimal left

ideal for irrep o occurring in the decomposition of the group

algebra. rrom

pe?. =
5
-

1 — H
2‘ E LP‘kR e] ze- . E LPJ- -e] . ’ (51)

12

Wit~

it folilows that the coefficients {P]§4 in (50) are elements
3

of an irreducible representation matrix for P. It can be seen

from {51) that the sets Bf and B

-

, where x#j, span two car-

AR

rier spaces for the same irrep.

Multiplying (50) by fP-l]ik , summing over P, and apply-
ing the Orthogonality Theorem for irrep matrices, one obtains
the expressions

ef, = (&°/x1) ‘L}i.p ) (52)

i~
g

These relations are often used to find the matric basis ele-
ments.
Now it is possible to see what property of the matric

basis corresponds to orthogonality in the irrep matrices. We
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define for each element X = ] x(P)P in A(Sy)
. SIS e |
an adjoint X'= ¥ x*(P)Pp =] x*(P )P ,
P

where x*(P) is the complex conjugate of the number x(P). This
definition is reasonable in view of its application to inte-

grals over functions: if ¢ and Y are well-behaved functions,

<xo|y> = § x*(P)<@olu> = J x*(P)<o|PTy> = <o|xTy>.
P P

- (o] . - -
The adjoint of €55 is, therefore,

= - * =7 *
T = (&% v pThi%eTt = (@@ § i1%ie .
i3 5 ji 5 ji
Comparing this with
O _ ¢ oy rp—iq
ejl (@7/N1) g P ]ijP ’
we see that the property
o o
e.. = e.. 53
i3 J1 (53)
* -
implies that 2197 = 2p7h% .
J= 13

Thus a matric basis with property (53) spans carrier spaces
for unitary irreps. If the cceificients in the matric basis

elements are real, then the irrep matrices are orthogonal,

ana
e, = (&% ¥ [plsz . (54)

In order to generate basis functions for orthogonal irre-
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ducible representations of the symmetric group, therefore, we
require a matric basis of operators with the multiplicative
property (49) and the adjoint property (53). This matric basis
is to be associated with the irreps of Sy by building it

around primitive idempotents for the minimal left ideals occur-
ring in the decomposition of the group algebra.

The primitive idempotents e§i=e§ are to be constructed to

have the properties

a 8 _ .oB a —
e.ej = § Gijei’ ei = ei .

'.l

It will follow that (see page 137)

o _ o
[gef = Il = T .
ax ol

Thus the idempotent diagonal elements of the matric basis will

be projection operators for irreducible carrier spaces.

Young Idempotents, Young Operators

Minimal left ideals of A(SN) can be generated using a
method developed by Alfred Yocung (1501, 1502, 1928, 1930,
1932). An account of this method, with a complete bibliog-
raphy, has been given by Rutherford (1948). Weyl (1931) and
Boerner (1963) nave described the connection between Young's
wcrk and ¢roup algebra theory.

Since there are as many classes of Sy as there are par-

titions of N, the partitions of N provide a way of liabelling

the irreps oI SN: for N=4, the labels are



82

partition pictorial label
{4,0} 111
{3,1} L
L
{2,2} = {2%} Eg
{2,1,1} = {2,1%}

1,1,1,1 = 1%y

I O LJ~£j

These pictorial labels for irreps are called Young diagrams

or patterrs. If the row lenctns of a Young diagram are
Pir Pos wees Py {where plzpzz ...Zpr), the diagram is named

{p}.

The diagrams are used to make Young tableaux. A tableau

is a particular way of arranging the numbers 1,2,...,N 1in the
boxes of the diagram. For example, the diagram E}] for N=3
gives rise to the following tableaux:

12 13 21 31 2 3 32
3 2 3 2 1 1

(We shall often omit the boxes for convenience.)
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Each tableau is used to build operators. Given a tableau
T, let ®R = {r} be the set of all permutations which inter-
change only numbers on the same row. This set is a group -

the row group. We similarly define a column group, C = {c}.
For the tableau 12 ; these are
3 4

5

&
l

= {1, (1,2), (3,4), (1,2)(3,4)} ,

¢ ={z, (1,3, (1,5, (3,5, (1,3,5), (1,5,3),
(2,4), (1,3)(2,4), (1,5)(2,4), (3,5)(2,4),
(1,3,5)(2,4), (1,5,3)(2,4)} .

Note that ® is the direct product of the groups for individ-
ual rows, and that C is the direct product of individual
column groups.

The row operator is defined to be a symmetrizer on the

row group:

This is the product of symmetrizers for the individual rows.

The column operator is defined to be an antisymmetrizer

on the column group:

c= J e(a)c,
cet

where e€(c) is +1 when c is even and -1 if c¢ is odd. This is
the product of individual column antisymmetrizers.

The tableau operator is the column operator followed
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by the row operator:

E(T) =RC =} r } e(c)c. (55)

~

~

(Some authors define E(T)=CR.) This operator is given the

special symbol E because it is essentially idempotent (idem-

potent within a numerical factor) and generates a minimal

left ideal. It is called the Young idempotent for tableau

T, and it satisfies (47).

Young tableaux and idempotents have the following im-
portant property: if T and T' are tableaux belonging to the
same diagram, then E(T) and E(T') generate minimal invariant
subspaces for equivalent representations; if T and T' belong
to different diagrams, E(T) and E(T') generate minimal left
ideals for nonequivalent representations. Since each diagram
labels a distinct irreducible representation, the Young
idempotents can be used to generate irreducible subspaces
for every distinct irrep.

One further definition is required in order to clarify
the correspondence betweeq diagrams and irreps. A standard
tableau is defined to be a tableau in which the numbers along
each row increase to the right and numbers on each column
increase downward. The diagrams, standard tableaux, and Young
idempotents for N=4 are shown in Figure 5.

It can be shown that the number of standard tableaux

for the diagram D={pl={p,,p5,...,p} is



Diagram, D

Standard tableaux, T?

1234
123 124 134
4 3 2
1l 2
3 4
12 13 14
3 2 2
4 4 3
1
2
3
4

Number of
standard
tableaux, d

D

Young idempotents, E?

51234

5123Al4 5124413 5i3¢A12
512534413A24 SiysZJAlfA34
8124134 tS13"4124 J14A123

1234

Figure 5. Example of N=4

S8
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X
TT (o;=ps+3=1)
D _ i<y J
d” = (N!) (56)

r
TT Log+z-iy 1’

i=1

that these numbers satisfy the equation

§ (@)% = n,
D

and hence that dD is the dimension of the irrep of SN corre-
sponding to the diagram D.

The situation is as follows. Each Young diagram D labels
a distinct irreducible representation TD, the dimension of
which is given by dD, the number of standard tableaux. This
number is also the number of equivalent carrier spaces for
TD occurring in the decomposition of the group aigebra. Thus
there is a one-to-one relation between the standard tableaux
{T?] i=l,2,...,dD} for diagram D and the equivalent carrier
spaces for rP occurring in the decomposition of A(SN). Since
the Young idempotent for each standard tableau generates
an irreducible subspace of A(SN), there is a one-to-one
relation between these minimal left ideals and the irreduci-
ble carrier spaces occurring in the decomposition of the
group algebra. Just what this relation is will become clearerx
as we proceed.

Suppose that the standard tableaux for diagram D are

related by permutations p?j :
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D _ D
_ D,-1_ D D
where p i = I and (pij) pJ . It can be shown that the d
elements
D D

where EE is the Young idempotent for Ti, are all linearly

independent. Since these elements belong to the left ideal

generated by Eﬁ, they span a carrier space for the irreduci-

ble representation associated with the diagram D. These

operators, called Young operators, thus form a basis for

an irreducible carrier space, and can be used to make basis

functions. We shall give an example shortly.

Spin Diagrams

Diagrams with one or two rcws correspond to spin repre-

sentations of S, . Other diagrams are associated with Young

idempotents containing column antisymmetrizers for more than
two numbers. Such an operator will annihilate any spin primi-
tive function to which it is applied, since spin functions

contain only two one-electron functions - o and B. For exam-
ple,
E(gz}aBaB = 5i2A134aBaB = Siz(aBaB—aBaB-BBaa-aBBa+BSaa+aBBa)
4
= 0.

We can now see which diagram labels a particular spin
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representation. For a diagram containing two rows at most,

(56) becomes

D

N!(p,-p,+1)
&P = 172

(pl+l)!p2!

This gives the dimension of the spin representation corre-

sponding to diagram D. Using the example of N=4, we have the

spin representations

[T11]1 (dimension 1),

i (dimension 3),

E (édimension 2).

Comparison with the branching diagrams, Figures 1 and 2,

reveals the following correspondence:

00 «— s=2,

U e se,

E} — S8=0.

Indeed, the general relation between the diagram {pl,pz}

and the spin representation labelled by N and S is given by

(pl-pz)/z =8, pl+92 =N,
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or Py = (N/2) +S, py, = (N/2) - S.

Let us use the techniques described on the last several
pages to derive spin functions for N=4, S=1, M=0. The stand-

ard tableaux are

so that p?l = I, pgl = {3,4), pgl = (2,3)(3,4).

The Young operators for T? are

D _ _D D _ D D _ D
E;; = Ej, Ejqy = (3,4)51, E3; = (2,3)(3,4)El.
. D _
where El = 5i2§Al4 .

These operators, applied to the spin product 6=afaB for M=0,

give three linearly independent spin functions:

eD EDe =, A aBaB 2 (aBaB+aoBR+BRaaR

1

1
=t
'—J
N
w
[
L

-BRaa—-aBRa-Bafla)
2iacBB-RBaa+ (aB+Ba) (aB-Ba)l:

o) = (3,467 = 2(aBBa+aapB+BaBa-pRac-aBaB-Baap)
= 2[caBB-RRac—(aB+Ba) (aB-Ba)l;

2 (aBBa+apaB+BBac-BaBa-calB-BacB)

@
]

D D
= (2,3)92
= 2[BBac-aaBRB+ (af—-Ba) (aB+Ba)l.

Direct application of §2 shows that these functions are spin

eigenfunctions, with eigenvalue S=l.
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Deficiencies of Young Operators

From a practical point of view, spin functions gener-
ated by Young operators have two shortcomings: they are not
orthogonal, and they correspond to neither the YK nor the
Serber spin-coupling scheme. Consequently, these functions
do not have the properties demanded by the SAAP formalism.

One reason for this is that Young operators do not com-
pose an orthogonal matric basis. It can be shown that they

multiply, not according to (49), but according to the equa-

tions
D D' _ DD's2 _D
EijEmn = § Gijin (a2 number),

~

where G.m is not always zero when j#m.

&

In addition, there is nothing about the construction
of Young operators that would associate them with any par-
ticular spin-coupling scheme.

Neither do these operators possess the adjoint property
of (53). Since row and column operators are self-adjoint

(symmetrizers and antisymmetrizers are Hermitian),

DT D _D D+, D ,-1 D.D,F _D
E;. = A = E- < = (R.CZ .
i3 (plj j) 5 (913) ( 3 ]) Py
_ P DD _ D DD D
= Cjijji pjiCiRi # Eji'

This last deficiency can be remedied by defining new

operators p?jC?R?C? or pij?C?R? . Such operators are easily

seen to satisfy (53). Their properties have been studied by
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Gallup (1968, 1969), who has used them tc generate projected
Hartree-product wave functions.
According to (49), the diagonal elements of a matric

basis multiply according to

D D' _ .DD'. D
€385 = 0 034 €55

That is, these elements are idempotent and they annihilate
each other from the left and right. It can be shown that the
generatin¢ units for the minimal left ideals into which the
group algebra decomposes also have this property, as well

as the property (47) characteristic of primitive idempotents.

Young idempotents are primitive. Two Young idempotents
from different diagrams annihilate each other from the left
and right. However, two Young idempotents from the same dia-
gram may not do this. In other words, Young idempotents
"almost" multiply like the diagonal elements of a matric
basis (McIntcsh, 1960).

Exemining the situation more closely, we may draw the
foilowing conclusion. There occur in the decomposition of
A(SN) &P egquivalent irreducible carrier spaces for the irrep
labelled by diagram D. These carrier spaces are generated by
the matric basis icempotents e?, eg, cees e?D. The Young
. D _D D & :
idempotents El, E2' ce ey E-D generate carrier spaces for this

a
representation also. Thus there must be equivalence trans-

formations relating the Young idempotents and the matric

basis idempotents.
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In constructing from Young idempotents a matric basis
suited to the SAAP formalism, we must, therefore, build

operators that

(i) are related to a spin-coupling scheme;
(ii) multiply like a matric basis;

(iii) have the adjoint property (53).

As we shall see, this can be accomplished by multiplying
Young idempotents from the left and right by certain opera-

tors.

Tableau Chains

It is well-known that standard tableaux can be derived
from a genealogical scheme similar to that involved in spin-
coupling (Jahn and van Wieringen, 1951; Pauncz, 1967; Cole-
man, 1968; McWeeny and Sutcliffe, 1969; Klein et al., 1970).
Since Young spin diagrams {pl,pz} label spin representations
of Sy through the relations pl=(N/2)+S, p2=(N/2)-S, the YK
branching diagram can be given in the form shown in Figure
6. In other words, the Young diagrams can be considered the
result of a "box-coupling"” procedure: one starts with Ej

and adds boxes one by one, subject to the condition that

Figure 6 is a kind of shorthand for the genealogical

construction of standard tableaux. If we start with the

tableau and add, one by one, the numbers 2,3,...,N in
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1/2 1]

i

VA

/
P

Figure 6. YK branching diagram for Young diagrams

such a way that the resulting tableaux are standard, we ob-
tain Figure 7.

Each route in this figure results in a unique standard
tableau. Conversely, each standard tableau uniquely defines
its predecessors along the route. This follows from the fact

that removal of the highest number from a standard tableau
for N numbers produces a standard tableau for (N-1) numbers.
Thus, for example, one can work backward from %24 in the

following way:
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LR, ERER
N
g El= El=
VRN

1/2
0

YK branching diagram for standard Young tableaux

Figure 7.
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|l]2|4l

E12] ——
/ - 'S=\ =
(N=4,5=1)
[rz]
13

(N=1,5=3) N
The significance of this is that each standard tableau

can be uniquely associated with a YK branching route, and

therefore can be uniquely associated with a YK spin function.

To use the example of page 52, N=4, S=1 (or D= 11y, we have

the correspondence

Standard tableau Branching route
23 /\

2 ¢ N

3 .

. A

It will be observed that each number on the upper row of a

S

=

[

standard tableau corresponds to an upward movement in the
associated branching route, and each number on the lower row
corresponds to a downward movement.

Strictly speaking, it is not the tableau itself that

corresponds to a YK branching route, but the unique "chain"
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of tableau predecessors from which it derives. For example,

the branching route is a shorthand for the tableau

chain

1731 __ [I1374]
2] [2]

1] —

PN

[ 1)

Such a chain involves the addition of one number at a time,
and is called a l-chain.

k

In general, we denote by Tg' the standard tableau ob-

™
tained from T; by removing its k highest numbers, viz.

N, N-1, ..., N-k+1. Thus the l-chain defined by Tg is written

D

D,N-1 D,N-2 TD,l T
r r

— T_ ' —_— ...
r r

Each standard tableau is also associated with a unigue
2-chain, if N is even. Removal of two numbers from a standard
tableau results in a smaller tableau which is also standard.
Thus one can work backward from a given standard tableau and

define its predecessors in a Serber-type genealogical scheme.

For example, ' ' ‘
11124 112746
|

li2| — '
L3 [315]

In general,

In other words, standard tableaux can be considered construct-

ed according to the Serber branching diagram of Figure 8.
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[2]34]

=

214

Figure 8. Serber branching diagram

for standard Young tableaux
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We have indicated in each case the pair of numbers being

added, and their positions relative to the original tableau.
At each stage in such a branching diagram, a geminal

pair of numbers 2u-1,2u is added to a ﬁableau containing

u-1 geminal pairs. It will be observed that the addition

of -+ [2p-1] 2u | always corresponds to su=l, and the addi-

tion of two numbers on the same column always has the effect
of adding su=0. There is an ambiguity, however, when 2u-1
and 2u are on neither the same row nor the same column. One
case must correspond to the addition of su=l and the other
to su=0. We are free to make a choice, so long as we are

consistent. In the following pages, we shall associate

with S =1
cee [2u-1
d i = L
an with Su 0

Now it is clear that the concept of tableau chains pro-
vides the link between Young's theory of the symmetric group
and the genealogical comnstruction of spin functions. However,
we have already pointed out that Young operators do not gen-
erate YK or Serber spin functions. Clearly, this is because
they do not, in themselves, carry information specific to
l-chains or 2-chains.

We begin to remedy this deficiency by defining chains
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of Young idempotents. Suppose that Eg and Eg'k are the Young

idempotents for the tableaux TE and Tg'k, respectively. Then

the m-chain of standard tableaux

TD,N—m TD,N—Zm . TD,m T
r r
is associated with the m-chain
ED,N-m ED,N-Zm . ED,m ED
r r r r

of Young idempotents. (We assume that N is a multiple of m.)

. <. - . . D <
Carrying this one step further, we define Lr’ to be

the minimal left ideal generated by the Young idempotent

Eg'k. Thus each standard tableau Tg defines a unique m—-chain
LD,N—m LD,N—2m L LD,m . LD
r x r r

of minimal left ideals.

Chains of Young Idempotents
and Genealogical Spin Functions:

an Heuristic Argument

It was mentioned previously that the YK spin functions

for fixed N and S form a basis for that special orthogonal

..., S, are also represented

1

by orthogonal, irreducible matrices. The representation is

irrep or Sy 1n which Sn-1’ Syn-27

said to be adapted to the sequence of groups

Snt Sy-1 Sy-2v e Sye
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We shall say that a representation with this property is

YK-adapted.

In a similar way, the Serber functions (for even N) are

adapted to the seguence

Snr Sn-27 Sy-gr cecr Spe

In addition, every geminal two-electron subgroup of SN is
represented irreducibly. A representation with these two

properties is said to be Serber-adapted.

The adaptation of representations to sequences of

nested symmetric groups is the group-theoretical signifi-

cance of a genealogical spin-coupling scheme.

Now suppose that Ly is a subspace of the group algebra,

A(SN), with the following properties:

(1) LY is invariant under left-multiplications by

elements of SN and transforms according to

the minimal left ideal L?;

(ii) the elements of Ly transform among themselves
under left-multiplications by elements of SN
like elements of the minimal left ideal Lg’k,

-k

for k=l’2’o..’N—l-

Property (i) means that LY is a carrier space for an irre-
ducible representation of SN' From property (ii), we see that

Ly is also a carrier space for irreducible representations of
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cessr S Thus L, is a carrier space for a YK-

Sn-17 Sy-27 1 v

adapted representation of Sy+

In a similar way, a subspace Ls of A(SN) is a carrier

space for a Serber—adapted representation of SN if

(1) Lg is invariant under left-multiplications by

elements of SN and transforms like Lg;

(ii) the elements of LS transform among themselves
under left-multiplications by elements of sN—k

like elements of L?’k, for k=2,4,...,N-2;

(1ii) the elements of Lg are either symmetric or
antisymmetric with respect to left-multiplica-

tions by geminal transpositions.

Before defining orthogonal matric bases for genealogi-
cal representations, it is instructive to see what predic-
tions can be made about the structure cof such operators by
extending the present argument. We shall see that idempotent
generators for YK- and Serber-adapted carrier spaces can be
deduced rather easily.

The minimal left ideal associated with the standard
tableau Tg is defined to be L2={XE?}, where X sweeps the

whole group algebra. It can be shown (Rutherford, 1948,

p. 20) that Young idempotents have the property

D,.D _ D, . D D
ErXEr—e 1[XEr] Er,
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where eD = (N!/dD) > 0 does not depend on r, and i[XEE] is

the coefficient of the identity in XE?, when it is expanded

in terms of the group elements. It follows that
D D, _ D.: rupD D
(XE[) (XE[) = 6 -i[XE_1 (XE ),

so that (XEg) is essentially idempotent if it contains the

identity. In other words, new idempotent generators of Eg

can be made by left-multiplying gg.

Consider, for example, the element

D'N-IED ’N-z ’lE

® o0 ED D.
r r r “r

EY(D,r) = E

This operator belongs to LB. To the left, it has

N-1

D,N-1 " yhich generates Lg’ ;

(E?'N-lEg’N—z), belonging to L?'N_Z;

D,N-lED,N-ZED,N~3

D ,N-3 -
r r r Lr '

(E ) » belonging to

etc.

Thus EY(D,r) behaves under left-multiplications by elements

D,k

. The
r

of (where k=1,2,...,N-1) like an element of L

Sn-k
Young idempotent Eg has been "YK-adapted" by multiplying it

from the left by the l-chain

’

1 r Tt
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of Young idempotents from which it derives.

Similarly, we may expect a Serber-adapted idempotent

to take the form

D 'N-zzD ,N-2SD ’N—4ED 'N-4 cee S

ES(D’r) = Sr r r r

where SD'2k either symmetrizes or antisymmetrizes the geminal

r
pair (N-2k-1, N-2k). Since the operators to the left of Sg'zk

do not contain the electron labels on which it operates, the

pair-symmetry operators can all be brought out to the left:

D,2_D

D,N‘Z D,N-4 cee
S E_'"E))

D,Z
r r x

D,N—ZED,N-4
r r

—] * e o D . )
Eg(D,xr) = (S s "%s]) - (E

Thus, when ES(D,r) is applied to a primitive function, it
will generate a function which is either symmetric or anti-
symmetric in each geminal pair.

Assuming that EY(D,r) and ES(D,r), when expanded in
terms of the group elements, contain the identity, they are
essentially idempotent. However, they are not Hermitian,
so they cannot be the idempotent diagonal elements of the

matric bases we seek.

It is easy to see that the following operators are Her-

mitian:
f - D,N-l... D’l D D+ D’lf .o D'N—l+
+ _ D_D,N-2____D,2 D_D+_D,2% __ _D,N-2f.D
ES(D,r)ES(D,r) GrEr Er ErEr E. Er Gr ;
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5 3 D -— D’N-Z LN 2N ]
in which Gr = (Sr Sr

D,2.D, _ .Dt
sr) - Gr

It can be shown that these operators are, in fact, Her-
mitian idempotents generating YK- and Serber-adapted carrier
spaces for irreducible representations of SN' It can also
be shown, however, that they do not multiply like the diago-

nal elements of a matric basis. It may be that
[E, (D,r)E} (D,r) ] [E, (D,S)ET (D,s)] # 0,

for example. Thus these operators cannot be used to generate
orthogonal basis functions.

We present in the next section matric bases for YK- and
Serber-adapted orthogonal representations. It will be seen
that these matric bases are symmetry-adapted in a way simi-

lar to E E+ and E_.E.. Their definitions differ only to the

Y'Y sTs*
degree necessary in order to obtain the correct multiplica-

tion properties.

Definitions of

Orthogonal Matric Bases

Glossary of notation
Let Tg be a standard tableau for a diagram D with N

boxes, and let(gg and Cg be its row and column groups. Let
R? and Cg be the row and column operators for Tz, and let

Eg = Rgcg be its Young idempotent. Then Eg has the property
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b,.D _ D . D D
ErXEr = 6 l[XEr] Er ’

where eD>0 depends only on D, X is any element of the group
algebra, and i[XEB] is the coefficient of the identity, I,
in the expansion of XE? in terms of group elements. In par-

ticular, i[ED]=1 (Rutherford, 1948, p.l4), so that

0 =6’z .

E r

D
rE
It can be shown (Rutherford, 1948, p.65) that P = (n:/dP),
where dD is the dimension of the representation labelled by
diagram D.

The row and column operators are self-adjoint, so that

DTRD+ = CDRD
r'r

DT _ DD, T _
Er = (chr) = Cr -

Letting og be the order of the row group for any tableau be-

longing to diagram D,

DD _ D _D
RrRr = Og Rr R
so that
p+.p _ b DDD_ D .D.DD_ D DD
Er Er = CrRrchr = Og Crchr = Og crEr .

We define pgs to be the permutation that rearranges the

D

numbers in Tg to form Tr:

Thus pgs is such that pgr=I and pgr = (pgs)-l. Furthermore,
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the tableau operators have the properties

D_ D _DD D D DD
Rr = Prs®sPsr ¢ Cr prscspsr ’

and Er = prs spsr *

We denote by Tg’m the standard tableau obtained from T?
by removing the m highest numbers, i.e., N, N-1, ..., N-m+l.

Then if m is a factor of N, Ti defines the m-chain of standard

tableaux
DN e Dm gD
r ko

There corresponds an m~chain

E?’N‘“‘—-» R— Eg'm-—> D

of Young idempotents.

A matric basis for orthogonal YK-adapted representations

The standard tabieau T? defines the l-chain

TD,N—l TD,N—Z . TD,l 1 TD
r r r r
of standar® tableaux, where Tg’N—i = [1]| for every D and r.

We define for this i-chain a chain of idempotent opera-

tors, in the following manner:

eg'N~l =1,
D,N-2 _ ,_.D,N-2 D,N-1I,T ﬁD,N—Z D N-1 D,N=-2
e = (J:.r e, ) (::.r )/k ,
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D,l D,i D,i+l .i' D'i D,i"'l D)i

e '” = (Er e ) (Er e, )/kr '

. L] L] ’

o _ ,bDb,l,%,.DD,1, ,D

e, = (E_e/ ) (Erer )/kr ’ (57)

r
in which pg = 1[CgEgeg’l] .

It should be noted that these operators are Hermitian.

The idempotents eg are used to construct the matric

basis elements

p _ ,bp,1,¥D ,.DD,1 D,D,1/2
e .o = (Erer ) P (Eses )/(krks) (58)

The diagonal elements egr of this basis are identical to the

idempotents eg defined by (57).
For application to primitive functions, it is more con-

venient to use an alternative expression for the matric basis:

p _ D,1DDD _D.DD,1,,.DD1/2
ers - er chrprsRsCses /(krks)

D 1/2]

_ D,1D DD D.DD,1, DD, D
e ""p_ CRR.Coe "/[870g (p o)

- D,1D D.b D,1l D, D D,1/2
= &Dr1pD cor2cDeD /1P (02000 41
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CE e

D _ b,1 D .DDD,1 D, D D,1/2
or €rs T ©r Prsgts®sSs /18 (prps 1. (59)

These equations define operators built around Young operators,
but adapted to the genealogy of l-chains through equations

(57) .

The definitions are most easily understood by working

an example. Let D= |, for which the standard tableaux are

TD=1 2 and TD =_._]l 131

14

so that p?z = (2,3) = pgl .

The l-chain defined by Tii is
TD’2= — TD’1= —— TD= __—_Il lzl ’
1 1 1 m
for which the Young idempotents are

D,2 — D’l — '-‘D = A
By = — BT S 512 - B} = Siz 13 *

Neglecting numerical factors,

e?'z d I,

D,l - Dgz D,l D'l D,2 — . . . -—

el = el C:L El el = T 512 I= 512 ’
D — D'l D D Dll —

e; =e) CiEje] T = SLA S AS, .
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The l-chain defined by T is

. oo.1_ [1] o0 = [113]
‘ 2]

D,2_ . __ D,1_ . .D_
2 =1 By =4, E, = S A, -

eg’z d I,

p,1. _ b,2.0,1.D,1D,2 _ _

ey’ "t = ey ey By ey S = T A AT = 24,

D _ D,LD.DD,1 _ _

e, = ey B ey T = 4k oS A oA, = 164 S, M

The entire matric basis, then, consists of the operators

D _ -
€11 7 512“413812’413812 '

D _ D,1D D.DD,1 _ . .
ep1 = €3  Py1CE ey T = 24,0 (2,3) A S A S,

282 28,50 (2,:3) A S ALA,

485 (2,30 A Sy 34 5

1
o

D D _
ey = €5 = 1648, 24;, -

The whole matric basis is not required for the construc-

tion of basis functions for the irrep. The operators
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{egl, egl} span a minimal left ideal associated with T?;
similarly, {egz, egz} span a minimal left ideal associated

with Tg. Either of these subsets can be used to generate

basis functions.

As an example, we apply e?z and egz to the spin product

function 6=aBa. Since the diagram D=E}j corresponds to S=1/2,
we should obtain YK spin functions for N=3, S=M=1/2. We have

D = . . D = ¢ =
ey, = 4Si2 (2,3)+® and ey, = 16® , where @ —~Ai2613A12.

Thus
Pe = Jﬁzéi3(a8a-8aa) = JEZ(ZaBa—Baa-aaB)
= (20Bfa=-2Bca-Bac+oBa)
= 3 (aBa=-Baa),
so e‘ize = 128, ,+(2,3) - (aBa-Baa) = 128, (caB-Baa)
= 12(2aaB-8aa-aBa)
= 12[2a0B~-(aB+Ba)a]
and egze = 16P6 = 48 (aR-Ba)o.

These are, indeed, the (unnormalized) YK spin functions ob-
tained for N=3, S=1/2, M=1/2 from the spin-coupling equations
(28) . Notice that egze corresponds to the branching route
//A\ , while egz corresponds to JAV/' and that these functions
are orthogonal.

The same functions, within a numerical factor, are ob-

tained by means of the matric basis elements e?l and egi.
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A matric basis for orthogonal Serber-adapted representations

When N is even, the standard tableau Tg defines the 2-

chain D,N-2

T
r

’

D,N-4 D,2 Tg

— T _— ..— T —
r r
where T2'¥"2 is either or [1] depending on T2

r 121 ’ r*

For Tg, a geminal operator Sg is defined in terms of the
positions of the two highest numbers, N-1 and N. Denoting the

row and column on which a number k appears as Ty and Cpr We

define
& - {[I+(N -1,N)1/2 if xy_i=rg or Iy i>rg ;
r N . - _
[I-(N-1,8)1/2 if ¢ _;=¢g or (xry_y<ry, Sy 7Sy

In other woxds, Sg symmetrizes the numbers (N-1) and N if

‘I’g contains these numbers in the positions -++[(N-1) [N] or

e ]
E.} grs ;, but antisymmetrizes them if ™ contains =
N-1 r @
or .
N-1
N
Geminal operators SD 12K for other tablieaux Tg,ZK in the

2-chain are defined analogously.

A set of Hermitian idempotents is defined recursively

for the 2-chain:

= (ED (N= 452 fN= 4e§,N 2) (ED N- 455 /N-4 D N- 2)/kD fN= 4
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- - . ’

D _ p.bD,2,1,.D.D D,2 D
e. = (Ersrer ) rSre )/kr . (60)

where kg is the number

D D D D

kr = O&'e 'Dr ’
. . D_ ...D_D.D D,2
in which .= 1[CrErSrer ]l .

The idempotents eg are used to construct the matric

basis elements
p p,2,+D ,.D.DD,2 D, D,1/2
€ ) prs(Essses )/(krks) (61)
It should be noted that a diagonal element egr in this basis
is identical to the element eg defined by (60).

As in the previous case, the matric basis elements can

be given in a slightly simpler form. The result is

D 2.0 D D_D.D 2

_ D, D,
e e, Srp C E_S e

D, D D\1/2
rs rs s s s /[e (p p ]o (62)

IS)

As an example of the application of these operatoré,
we generate the Serber spin functions for N=4, S=1, M=0,
using the primitive function «BaB. The Young diagram is

D= E}jj , for which the standard tableaux are

D _ [1]2]3 D _ [1[2]4] D _ [1I]374
Tl - —————— Tz - ————— T3 - —————
4 3 2
so that
D
py; = I, poy = (3,4,  ph = (2,3)(3,4),
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D _ D _ D _
and By =S5k Ep = Sio/hs B 6&34A12 -

The 2-chain defined by T? is

22 - T3 D - [17213]

1 4
D,2 —_— D,2 -— D’2 —
Thus e1 = ell = Sl = 5&2
D —
and Sl —.A34 .
D

2 2
D,2 _ D,2 _ .D,2 _
Thus ey’ = ey5 =5, = 512
D _
and S, = 634 .

22 o I 2 - 379
B 2
D,2 _ D,2 _ .D,2 _
so that ey’ = e33" = 55 _‘A12
D _
and S3 = 534 .

The matric basis elements {e£l|k=l,2,3}, which span a

minimal left ideal associated with T?, are therefore [using
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(62) and neglecting numerical factors]

D
e11 = S1243,%

D
= 812834'(314). @ ’

D _ e

where ¢ = .Al48123.A14.A34512 .

These are the operators that were displayed in (45) on
page 74. Rpplying them to ©=yBq3, one obtains the Serber func-
ions shown in (46) on that page. The branching routes can be

read directly from the geminal symmetrizers and antisymme-

trizers irn the matric basis elements.

General definition of the orthogonal matric bases

It is convenient to treat the matric bases for l-chains
and 2-chains together, under one master formula. Let the

m-chain defined by the standard tableau Tg be denoted by

TD,N-m TD,N—2m . TD,m TD ,
r r

r

where m is a factor of N.

For each standard tableau T?'Jm in this chain, an Hermi-

tian operator M?'jm is defined in terms of only the highest
m numbers, i.e., the numbers N-jm, N-jm-1, ..., N=(j+l)m+l.
When m=1, this operator is taken to be the identity. When

m=2, it is defined to be a two-electron symmetrizer or anti-
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symmetrizer, as discussed previously.

A set of Hermitian idempotents is defined recursively

in terms of each m-chain:

r r

’

eg,N-Zm _ (ED N=- ZmMD N-2m 2 N-m)+ <

ED N- 2mMD N- 2m D, N-m)/kg,N-Zm

x ( r

’

o

&P - (&P D,m)'i'(EDMDeD,m)/k

rrr r r
where k.= 0g "6 Py v
in which Py = ifC Eere

These idempotents are used to define the matric basis

D _ D D,m D,m 1/2
epg = (EDMDeD ™ TpD (2DMPeD ™) / (k2kD) (63)
. . . . D _ D
in which, it will be noted, e = e_.
rr r

It is convenient to use the matric basis elements in the

simpler form

D = D™uPpP PePuPel ™16l (pDpD)1/2) (64)

For use in generating basis functions for the irrep of
Sy labelled by D, a subset {e s |s fixed} of the matric basis

is used. The operators in this subset all have the form



D _ . D, D oD
e s = (number) e. rprs@s ’ (65a)
D _ .D_DDD,m
where Gs = CsEsMges (65b)
is fixed.
Discussion

We shall prove in the next section that the matric bases
defined by (58)~-(64) can be used to generate basis functions
for orthogonal representations of SN. More precisely, we will

show that

(i) none of the elements egs vanishes;
(ii) these elements multiply like a matric basis;
(iii) they possess the adjoint property eil = egr;
(iv) they are linearly independent and span the
group algebra, A(SN);
(v) the diagonal elements egr are primitive idem-

potents generating the minimal left ideals

occurring in the decomposition of A(SN).

That the matric bases are YK-adapted (when m = 1) or

Serber-adapted (when m = 2) is easier to see. Using (64),

neglecting numerical factors, and noting that Mg commutes

2,m' eD,Zm, etc.,

with e
r



_ D,2m D,m.D,m_D,m D,m D,Z2m
= Mg(er mMr Cr mEr mMr e, ) x

D.D_ D D,2m,D,m.D, D,mnp,m D,2m
% crErprs x (es mMs cs mEs s ©Ss )Mg

D, D,m, D,2m.D, D,mMD,m D,2m, .D_.D_D
Mer (er Cr mEr r Sr )CrErprs °

?’N-m D N-zm cee ED’m cee E? eec e (66)

LI ’
E Er r

D

_ D,N-m
where Gr =M r'

H O
=

D’m cee M
r

is a product of commuting operators. When m=1, Gg is simply
the identity. When m=2, it is a string of geminal symme-.
trizers and antisymmetrizers.

Comparison of (66) with the heuristically-derived oper-

ators EYE; and E_E. of the previous section shows that e?s

S°S
is YK-adapted when m=1 and Serber-adapted when m=2.
Orthogonal YK-adapted representation matrices were first
obtained by Young (1932, p. 218). This is the representation
known in the literature as "Young's orthogonal representa-
tion". Pauncz (1967) has shown that this representation is

identical to that obtained by Yamanouchi. A matric basis for

such a representation can be obtained from the relations (54)
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between orthogonal matric basis elements and permutations.
One obtains the so-called "orthogonal units" (Rutherford,

1948, p. 50)
oD = @ /nn JIeID P, (67)
P

where the sum runs over the entire symmetric group. Goddard
(1967a, 1967b, 1968) has employed this matric basis in
quantum-chemical calculations.

In nuclear theory, Jahn and co-workers (Jahn and
van Wieringen, 1951; Elliott, Hope, and Jahn, 1953; Jahn,
1954) have used matric bases for orthogonal YK- and Serber-
adapted representations. The latter were obtained from the
orthogonal units (67) by finding the transformation between
YK and Serber representations.

General discussions of matric bases, considered accord-
ing to their expansions in permutations, have been given by
Matsen and co-workers (Matsen, 1964; Klein, Carlisle, and
Matsen, 1970).

In all of these accounts; matric basis elements were
described as linear combinations of all N! permutations in
Sy- Thus matric bases were expressed as sets of Wigner oper-
ators. The disadvantages of this approach were discussed in
the last chapter.

To the author's knowledge, the only previous attempt

to obtain matric bases directly from the standard Young tab-

leaux was the derivation by Thrall (1941) of "Young's
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semi-normal units". These have been discussed by Rutherford
(1948) . The work reported in the present chapter is an ex-
tension of Thrall's approach to orthogonal representations

useful in qguantum chemistry.

The formulas given in the previous section would appear
to avoid the drawbacks of other methods for obtaining basis
functions. Referring to equation (65), one sees that basis
functions for any irrep of Sy can be generated by a set of
operators constructed from symmetrizers, antisymmetrizers,
and the permutations pgs relating standard tableaux. Further-
more, the "right half" of each operator, given by (65b), is
fixed throughout the calculation.

Although the matric bases presented here are defined
recursively, this does not cause serious computational diffi-
culties. The recursion gives rise to a number of row and
column operators which must be applied in succession to a
primitive function. As can be seen from the examples in the
last section, one applies a symmetrizer or antisymmetrizer
to the primitive, collects terms, and then applies another.
The operators are all "read" directly from the standard tab-
leaux. A computer program for such a procedure would not re-
quire large amounts of storage - the chief drawback of other
approaches. Such a program would have to perform very many
permutations and collections of terms, but these operations
involve only data transferrals and integer arithmetic, and

can be performed gquickly.
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A computer program is being written to generate Serber

spin functions by means of the matric basis elements (62).
Basic Lemmas

Before proceeding to the lemmas and theorems specific
to orthogonal matric bases, we summarize some elementary re-

sults that will be needed.

The definitions (57)-(64) used in the construction of
matric bases involve numerical factors i[x], the coefficient
of the identity in an element x of the group algebra. This

function defined on A(SN) has two properties which we shall

find useful.

Lemma ;:

If y is a number and x is an element of A(SN), then

ifux] = peilx].

Proof: If x =) E(P)P, then ux = )} pE(P)P, so that

i[px] = w&(I). But uilx] = ug(I) also.

Lemma 2:

If x and y are elements of A(SN), then i[xy] = ifyx].
Proof: If x = 5_’ g(P)P and y = 2 n(P'")P', then

J £(®)n(™)

ilxyl

and ilyx] = J n®e@E™).
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Since the sums run over an entire group, these expressions

are identical.

Notice that Lemma 2 implies the following cyclic prop-

erty:
ilxyz] = ilzxy] = ilyzxl],

for any elements x, y, 2z of the group algebra.

We now repeat the definition of the adjoint operation

and prove two results.

Definition:

For any element x = ) £(P)P in A(Sy), the adjoint

element is defined to be
x =) ex(@)pL,

where * denotes the complex conjugate.

Lemma 3:

For any x and y in A(SN), (xy)f = yfxf.

Proof: Defining x and y as before,

xp) T = 1] 7 e@neneeT =3 ] ex@mrene et
P P! P P!
= [ nx@ne "h (] ex@r Tt = ¥,
p? P
Lemma 4:

For any x in A(SN) other than the null, i[xx?] > 0.
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Proof: If x = )] g(P)P, then x' = ) g*(P)P_l, so that

itxx™1 = Jle@) % > o,
P

if at least one coefficient £ (P) is nonzero.

We shall make frequent use of two properties of the
tableau operators Rg, Cg, and Eg. These are proved in Ruther-

ford (1948), so they are guoted here without proof.

Lemma 5:

For every D, r, and s,

D .D_ .D._D D D _ DD
Prs Rs - Rr Prg and Prs Cs - Cr Prg
D .D_ _D_D
so that Prs Es - Prg -
Lemma g:

For every D, D', r, s, and every x in A(SN),

D D* _ DD' D _ D ...D
E_x Es = § Ers =] 1[Esrx],
D _ rni1/3P D _.D_D_ DD
where 6 = [N!/d7] > 0, and Ers = P gEg Erprs .

Lemmas Concerning the Matric Bases

Lemma 7:
If the numbers N-1 and N are on different rows and

different columns in a standard tableau Tg containing N num-
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D D,2

bers, then Er e, does not contain the transposition
(N-1,N): i.e., the coefficient of (N-1,N) in Eg e?’z is

zero.
2 does not operate on the numbers N-1

D
r

Proof: The element eg’

and N. Therefore, if Eg eD’2

were to contain (N-1,N), E
would have to contain a permutation of the form (N-1,N)p,
where p is a permutation which does not affect N-1 or N. We
shall show that Eg can contain no such permutation.

There are two forms possible for TS, namely

R (68)
o
and ""E""N (69)
1
D

It is sufficient to consider only the former. With T, of the
form (68), Eg will contain only permutations of the form

T ry 31%5°nSn-1 S where ry is a row permutation for the row

containing N, etc., and ¥, ¢ are permutations which do not

operate on N-1 or N.

If T ry 1TxNn-1 € = (N-1,N)P,

==l n=1 ~
then TN-15NNCN-1 = N-1,N)F “pé T = (N-1,N)q, (70)



124

where § dces not operate on N-1 or N. We will prove that (70)
is impossible.

According to (70), T-15NCNCN-1 must be a permutation
in which N is replaced by N-1, and N-1 by N. We know from the
form (68) of the tableau, however, that rg ,r.Cc.Cy_, has the

form
(eoekeo N-1)(...N) (...k...N) (...N-1), (71)

where the dots represent numbers other than k, N-1, or N.

Now, because of the form of the tableau, no two of these

permutations can share any numbers other than EJ N-1, and N.

Thus if, in cy = (...k...N), N is replaced by a number 2
other than k or N-1, the product rN—erCNCN—l will be a
permutation (...N&) because neither Yy-j ROT Iy will operate
on 2. Consequently, if any permutation of the form (71) can
satisfy (70), it will be one in which the numbers represented

by dots play no part at all. We may just as well consider the

simpler tableau

TD _ k N-1
r N *
But then
D - -
E. = [I+(k,N-1)][I~(k,N)]
=I + (k,N-1) - (kx,N}) - (k,N,N-1).
D

We have proven that Er can contain no permutation of
the form (N-1,N)p if TE is of the form (68). The proof for

{(6%) is similar.
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Lemma 8:

o D D’m — P D'm D’m
1[Er Mg e, ] =k J.[Er e, 1, k>0,

for every D and r, and for m=1 or m=2,

Proof: We deal here with operators defined in terms of a
single standard tableau and its m-chain. We therefore drop
the superscripts and subscripts, and denote Eg by E, Mg by
M, and eg’m by e .

For a l-chain, it can be shown (Rutherford, 1948, p. 28)

that _
E + (terms operating on N)

=E + ty -

E

Therefore, i[Ee ] = i[Ee ] + i[tge ]. The last term is zero
because e does not operate on N, and tN is made up only of
permutations that operate on N. Thus tNe— cannot contain the
identity. This proves the theorem when m=1.

For a 2-chain, there are three cases.

(1) If N-1 and N appear on the same row of Tg, then
M?Rg = Rg because Rg contains the idempotent Mg and is a

group sum. Thus

i[EMe”] = i[RCMe ] = i[RCe M] = i[MRCe ]

i[RCce”] = i[Ee ].

We have used Lemma 2 and the fact that M commutes with ef.

(ii) If N-1 and N appear on the same column of Ti, the
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argument is similar: C?M? = Cg, so that
i[EMe”] = i[RCMe ] = i[RCe ] = i[Ee ].

(iii) If N-1 and N occur on different rows and different

columns in Tg, then

i[EMe”] = i[E - (1/2){I+(N-1,N)} - e ]

= (1/2)i[Be" ] = (1/2)i[E- (N-1,N)-e ]

The last term contains il[E-(N-1,N)+e” ] = i[Ee -(N-1,N)I,
which is zero unless Ee contains (N-1,N). We proved in
Lemma 7 that this is impossible.

In all three cases, i[EMe ] = k+il[Ee ], where k>0. By
an argument exactly parallel to that for l-chains, it can be

shown that i[Ee ] = i[E e ]. This proves the theorem for

m=2.
Existence Proofs

Our purpose in this section is to show that none of the
matric basis elements vanish or blow up. The definitions in-
volve factors pg in the denominators. We begin by proving
that these guantities are never zero. As a by-product, we
are able to show that the diagonal elements of the matric

basis are idempotent.
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Theorem 1:

For any D and r, and for m=1 or m=2,

D4d..,.D_D D,m; _ ..D _D .D D,m .
(a) P = 1[Cr Er M? e, ] = 1[Cr Rr Cr Mg e, ] > 0;
....D D D,m .
(b) 1[Er M. e, 1 # 0;
(c) e? is idempotent and self-adjoint.

Proof: The proof is by induction. Using the notation of

the previous lemma, we assume that
i[Ee ] #0, ee =e, e ' =e,
then show that these properties recur: that
i[Ee] #0, ee=e, e =e, (72)

and also that i[CEMe ] > 0, i[EMe ] # O.

This is shown in five steps.

(i) We assume that i[E e ] # 0, so that i[EMe ] # 0

by Lemma 8. This is the induction for part (b). Therefore,

2

% € EMe~ is not the null, and i[xx%] > 0 by Lemma 4.

i[CRCMe™] = i[CR RCMe 1/0p

(ii) i [CEMe™ ]

i [RCMe CR] /0% ,

using Lemmas 1 and 2. By construction, M is idempotent and
comnutes with e : Me = Me M. In addition, we assume that

e idempotent, so Me = Me e M, and
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i[CEMe™] = i[(RCMe) (e MCR) l/op.

+ -

T R'. We assume that ¢ ' = e

mict

Furthermore, (RCMe-)+ =e

and M+ = M, C+ = C, RT = R by construction. Thus
(ReMeT) T = (eTMCR)
and i[CEMe™] = i[(RCMe™) (RcMe™) T1/0% = il[xx'1/0% > O.

This is the induction for part (a). We have yet to justify
equations (72).
(1ii) Since p = i[CEMe ] # 0 by (ii), the guantity

i[Ee] = i[Ee MCEMe ]/(©p) is defined. But

Ee MCE = E-6i[Ee MC] by Lemma 6,
= E+0i[CEMe ] using Lemma 2,
= E-0p ,
so that i[Ee] = i[EMe ] # 0 by (i).

(iv) Assuming that e  is idempotent,

ee = e MCEMe e MCEMe [/ (ep) 2

= e MC+*EMe CE+*Me [/ (ep)2

2

= e MC-E€p-Me / (©p) [as in (iii)]

e MCEMe / (©p)

= e -

(v) e’ = (e™MCRcMe™)7/(8p), since © and p are real.

We assume that e ' = e , so that

14
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et = en'cTrTcTuTe™/(0p)

e MCRCMe /(©p)

= e.

This completes the induction scheme. We now prove that

the induction has a base.

D/N=1 _ D/N-1 _ 1 5o that eD/N-1

For a l-chain, Er - r

is idempotent and self-adjoint, and

- r = i[1] =1 # 0.

i[E

For 2-chains, E?’N-Z = eS'N_Z = [Ix(1,2)1/2, so that

eg’N—z is idempotent and self-adjoint, and
1 (B2 202y o 5 (DN2) = 172 # 0. Q.E.D.

Theorem 2:

None of the elements e?s is the null.

Proof: We prove that EgeESEg'does not vanish. This is
D D D _ D,m . ,D D _D _D D D,m _D D, D D, 1/2
Er ©rs Es =Ere M Cr Er Prs M5 &g Es /18 (prps) ]

The underlined part is Egebpz by Lemmas 6 and 2 [the argu-

ment is similar to that in step (iii) of Theorem 1], so that

D D _D_ .D_D D,m .D , D,D,1/2
E. €rs Es - Er Prs Mg €s Es (pr/ps) 4



p D .D__D _D,D D,m_D D,1/2
or E_e_ B = < Mg e’ Eg (p /p )

s S prs S
_ D D,.,D D,m D 1/2
= Prg E eP ilEM_e T (o /p )

It was shown in Theorem 1 that pD pz, and i[Egmgeg’m] are
nonzero. Also, e >0 by Lemma 6 and pgs 2 is not the null

(Rutherford, 1948, p. 16). This completes the proof.

We have now proved that the definitions (57)-(64) of

the orthogonal matric bases yield existing, nonvanishing

operators.

Multiplicative Properties

Theorem 1 has already shown that the diagonal elements
eg = egr are idempotent. This fact, and the two lemmas that
follow, are enough to establish the matric basis multiplica-

tion relation.

First we must show that

o

Mg e?'m eg'm Mg = srs Mp e (73)

o
H

It is clear to begin with that

_ 4D D,m
M_ = Mr er

e ’

D eD,m
r

M D,m ,D
r r r

because M> and eg’m are idempotent and commuting. It remains

only to show that
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D Dm D,m . D _ .
Mr e, el Ms = null 1if r#s.

This is the purpose of Lemmas 9 and 10.

Lemma 9:
(For l-chains) Suppose that two standard tableaux Tg
and Tg belong to the same diagram, D, and differ in the posi-

tion of the highest number, N. Then Tg’l and Tg'l belong to

different diagrams, and

for every x in the group algebra.
(For 2-chains) Let two standard tableaux, Tg and Tg,
belonging to the same diagram, D, differ in the position of

at least one of the two highest numbers, N-1 and N. Then

either
Mp Mp = null = MP Mp

r s s I

or Tg’z and Tg'z belong to different diagrams. In the latter

case, D,2
’

for every x in A(SN).

D,1 1

Proof: For l-chains, it is obvious that Tr’ and Tg’ will

belong to different diagrams. The conclusion follows from

Lemma 6.

For 2-chains, the argument is similar except when
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2 will belong

D _ ,u_ D D,2 D,
Tr = (N l,N)Ts . In such a case, Tr and Ts
to the same diagram, but we have defined ME and Mg such that

one will symmetrize N-1 and N, and the other will antisymme-

trize them. In this case,

D . D _ _ D
Mr Ms = null = M_ M
Lemma 10:

Let TB and Tg be different standard tableaux belonging

to the same diagram, D. Then

D D,m D,m D _
Mr er es M.s = null.

Proof: 1If Tg and Tg differ in the positions of their highest
one (for l-chains) or two (for 2-chains) numbers, then Lemma

9 applies directly, and, since Mg commutes with ez’m for

every t,
D_D,m D,m D _ D D,m D,m
Moe ' Teg mMs M_M_e ' Te

D,m
r

{(number) MDMDeD’zmMD'mC
rs r

< ED,m,MD,meD,ZmeD,2mMD,mCD,mED,mMD,meD,2m
r r r s S s s (3 s

where one or the other of the underlined factors is the null.

Otherwise, there is a number k such that removal of the
. D D . D,km
highest km numbers from Tr and Ts results in tableaux ‘I‘r

and Tg’km differing in the positions of their highest m
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numbers. Then recursive substitution gives

D D,m _D,m.D
Me e My

— D.&%P,m D,m
= (number) M.ger - Cr x

D,m . D,m D,2m D,2m.D,m.D,m.D,m.D,m D,2
x E_ mmg e el mMs Ce mBs mmg &g mmg

MD,kmeD,(k+l)m.eD,(k+l)mM2,km e Mg

I I S

(number) Mg s

where the underlined factor is the null, by the argument

given above. This proves the lemma.

Lemmas 6 and 10 and Theorem l(c) put us in position to

show how the elements egs multiply.

Theorem 3:
L
DD(S D

rs —tu ru

Proof:
D D' _ gPgP' (,D2,P,R" P’y 1/2;-1
€ €y = 18787 (popgpy P 37771 7 X

x ’mMDp g,m D' mMp D! D' 'Mp‘eD',m

tuu u u u

where the underlined factor vanishes if D#D', by Lemma 6.

Therefore,



D D' _ DD Dm“D D D,m D,muDD D_D D,m
Crs€tu T Prs sE M'Des St ptuc Eu €u X

D,-2, D DD D,-1/2
x (e7) (prpsptpu) /

By Lemma 10, the underlined factor is GstMgeg'm, so

D D' _ .DD' D D ,mD b.b,,D D,m
ersetu =8 St r mM prSCSESMDe suCuEuMueu x
-2 - 2
x (8P) 2 (o2) (20D 12

Using the fact that Pg

a s~ stsu
D D' _ .DD! D,m, D D D DD,mDDD D D,m
€rs®tu © § ést r mMr rscsE €s csEspsuMueu x

D,-2, D —l( D D)-l/2

By Lemmas 6 and 2, the underlined part is

D,m D DD
ES l = E epS r

Eg e 1[EDMDeD Mo D E e 1[C e

=

so that

DL = P, DD B B/ 162D
P DR R BB /12
= 5D Sst ©y mMDp uC M e, D,m / [GD(png)l/zl
= 6DD"Sst egu

This proves the theorem.
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Orthogonal Operator Bases

for Every Irreducible Representation

It follows from Theorem 3 that a matric basis

{egslall D,r,s} consists of
7 @2 = n1
D
linearly independent elements. The argument was given on

page 78. Thus the YK- and Serkber-adapted matric bases intro-

duced here span the entire group algebra.

Furthermore, they have been defined in such a way that

Dt _ ,wDyD.D,m ¥ D DD _D,m 1%, Dy Dy1/2
€rs [(EMe ") prs(EsMges Y17/ (kpk)
_ D.,D D,m, T.D D.,.D D,m D, D,1/2
B [(EsMses ) psr(Eerer )]/(kskr)
sr

Thus these matric bases have the adjoint property (53). It

follows that a subset

D _ D .
B, = {ersls fixed, all r}

spans a carrier space for an orthogonal representation of SN'

We say that Bg is an operator basis for an orthogonal repre-

sentation, or for short, an orthogonal operator basis.

D D D

D
N ~ i = i fixed
ow Bs consists of elements ers €. s8ss’ with s fixed,
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spanning a left ideal generated by the idempotent egs. As a

matter of fact, this left ideal is minimal, for we now show

that egs is a primitive idempotent.

Theorem 4:

For any D, D', r, and s, and any element x in the group

algebra, ' ' '
D D' _ D D' _ DD D
e, xe, =e. . XxXe, = 8 k(x)ers ’

where A(x) is a number that depends on x.

Proof:

] ) ]
EDMDeg’mxeg mMD C B MD es 'rm x

DD'*DD'.-1

x (876" PP )
Applying Lemma 6 to the underlined portion,

X

]
D_D Dp' D'mMD D D EDMge

e_xe_ = § D,m
rTs r-rPrsts s

D D, D, m D, D.D -2, DD,-1
x 1lpg E Me, mM Cs 1(8”) (orpg)

_ .DD' ..D
= § {(numbex) ers

We have as a special case of this result,
D D _ D
e, xe_ = A(x)er ’

for arbitrary x. Thus e? has the property (47): the diagonal

elements of the matric bases are primitive idempotents.

These idempotents, unlike the Young idempotents, gener-
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ate the minimal left ideals occurring in the decomposition

of the group algebra. This we prove by showing that the iden-
tity, the generating unit of the whole group algebra, decom-
poses as the sum of the linearly independent elements eg,

which generate minimal left ideals.

Theorem 5:

D _ D _
gk

Proof: Let T = }) egr. Since the matric basis spans A(Sy),

an arbitrary element x can be expanded in the form
=131 &
brs rs® rs

It follows that

xT = J77 €2 el 11 eoe = INJ &2 (eDef)

for arbitrary x. Similarly, Tx = x. It follows that T = I.

It should be noted that this theorem cannot be proved

with Young idempotents E? in place of the eg. This is because

D

rs r ? in general. Young operators do not multiply

EE # 6

like a matric basis.
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The &° minimal left ideals for irrep D that occur in
the decomposition of the group algebra are those generated
by the idempotents {eg]r=l,2,...,dD}. The minimal left ideals
generated by {E?|r=l,2,...,dD} can be shown to differ from
these by eguivalence transformations.

We conclude by summarizing the useful properties of the

matric basis elements egs.

Each distinct irreducible representation of the symmet-
ric group is labelled by a Young diagram, D. Spin represen-
tations are labelled by diagrams with one or two rows.

The irrep labelled by D occurs aP times in the regular
representation. Similarly, &P carrier spaces for that irrep
occur in the decomposition of the group algebra. Each of .
these irreducible carrier spaces is a minimal left ideal
associated with a standard tableau Tg belonging to the dia-

gram D.

The minimal left ideal associated with Tg is generated

by eg = egs, and spanned by the subset
D-—fD 4 »1
BS = lers,s fixed, all xr}

of the matric basis.

We have shown how to construct matric bases for orthogo-
nal YK- and Serber-adapted irreps. Basis functions for these
irreps are generated by applying the operators in Bg, for

suitable D and arbitrary s, to a primitive function, ¢. These
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basis functions will be orthogonal, since

D D _ D+ D
<ers“ets¢> - <¢lersets¢>

_ D D
- <¢lesret:sqb>

D
Grt<¢]ess¢>
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CONSTRUCTION OF SPACE FUNCTIONS

Generating Dual Space Functions

by Means of the Matric Bases

Sometimes it is convenient to consider a SAAP, not in

the form
Qa (NSM) = Al¢ (N)Ga (NsM) 1, (74)

but in the alternate form
o (NSM) = [a(NS)1 LT o, (NSa)e, (NSM), (75)
o 8 B B

where ¢B and eB are dual space and spin functions. This sub-
ject was discussed on pages 7-9. The spin functions span an

irreducible representation

NS<—*P

[P]
of the symmetric group. The space functions span the dual

representation _ -
e(e) ((27H1%°)®

> P

When a SAAP is constructed in the form (75), there is
no sum over N! permutations, as there is in (74). Thus it
may be more convenient to construct SAAP's from dual space
and spiﬁ functions, if these can be generated easily. The
construction of dual functions by means of Wigner operators
has been discussed by Kotani et al. (1955), Harris (1967),
and Sullivan (1968). Goddard (1967a, 1967b, 1968) has nade

extensive use of matric basis elements (Young's orthogonal



141

units) for this purpose.

We now discuss how dual space and spin functions are re-
lated in terms of Young diagrams. We have shown that spin
representations are labelled by diagrams with one or two
rows. It turns out that space functions transform according
to irreducible representations associated with diagrams hav-
ing one or two columns.

A diagram obtained from another diagram by interchanging

rows and columns is said to be conjugate to it. For example,

ﬁ] is conjugate to | ’

while E}J is self-conjugate. Thus space and spin diagrams

are conjugate. This fact seems to have been first mentioned
by Weyl (1931), who gave the proof by tensor methods. The
proof that follows uses multiplication properties of Young
idempotents, and is more in keeping with the rest of our dis-

cussion. The proof consists of two theorems.

Theorem 6:

Let FD be the irreducible representation of SN corres-
ponding to the Young diagram D. In particular, let PA be the
antisymmetric representation, corresponding to the diagram
{1N}. Then the direct product r® @ 1P is the irreducible re-

presentation corresponding to the diagram conjugate to D.

Proof: Since TA is one-dimensional, PA ® TD is irreducible,
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and is therefore labelled by some Young diagram, D':

D

D! & TP .

Qs

A

r r

We consider the symmetries of functions transforming
according to these three representations. The carrier spaces
can be considered to be generated by Young idempotents, since
carrier spaces generated by matric basis idempotents differ
from these only by equivalence transformations.

A function fA transforming according to rd is antisymmet-
ric with respect to any transposition, and can be generated
from a primitive function f by applying the antisymmetrizer:
fA = Af.

Functions fD , transforming according to FD, can be gen-
erated from f by operating on it with (Xth), where Ez is the

Young idempotent for some standard tableau Ti belonging to

D, and D
Xt = g Cspst

is a linear combination of the Pgt’ with t fixed. This is

discussed on page 87.
]

Thus a function transforming according to T is given

by .
_ Dl Dl _ 1 ] Dl
fD' - g cspsuEu £ = g csEs psuf

14

1
where u is arbitrary. It follows that Eg fD' # 0 for at

least one wvalue of r.

Let fA and fD be functions transforming according to



I‘A and I‘D, respectively. Then fAfD transforms according to

$
r® . Thus it must be that

DI
Es fAfD #0 , (76)

for at least one value of s.

]
We now evaluate Eg fAfD directly, making use of the fact

that fD = Xtng, for some value of t. In the following, we
"

denote the row and column groups for a standard tableau Tv

by 62.3 and CV , respectively. We use the symbols A(H) and

S (@) to mean the antisymmetrizer and symmetrizer for a group

%]. Then

D' _
Bl £ £ =Y r V¥ e(e)e(f,£) = Y el(e)(xct,) (recfl)
s L z ATD éz A D

]Z:Z e(c)e(rlele) £, (refy)

1 |
where the sums run over rs&? and cecz . Thus

D! _ = D! D', -
Eg fafp = ‘A"A(Rs )Qg(cs Yy -

) Ot

Now let D' be the Young diagram conjugate to D', and T

]
be the standard tableau conjugate to Tg . Then

D' _ AD! N D' _ oD°
®Rg =Cq ama Cg =@,
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so that
ED £,f = gA,A(Cg')S(Qg')fD = £, Cg'Rg'fD
= £, Cg'Rglxthcg £
= £, EﬁlTXtEZ £ .

The underlined operator is the null unless D'=D (Rutherford,

1948, p. 21). Thus

D' - S o=
Es fAfD = 0 unless D' = D.

Comparing this result with (76), it is seen that D' must be

the diagram conjugate to D. This completes the proof.

Theorem 7:

1
Let FD and FD be real irreducible representations of

Sy corresponding to Young diagrams D and D'. Let TA be the

antisymmetric representation, corresponding to the diagram
¥y = {1,1,...,10.
. . D D! . A :
Then the direct product I'" & T contains T only 1f D
and D' are conjugate diagrams. If D and D' are conjugate,

D D'

I erT contains TA once only.

]
Proof: The number of times that PA is contained in rD ® rD
is -lc A D '
a(a,pep’) = (N1 ) xZ(@)x° (2)xP (),
P
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where XD(P) is the character of the permutation P in FD.

However, it was shown in Theorem 6 that FAQFD = rﬁ,
where D is conjugate to D. Thus XA(P)XD(P) = XD(P). Using
the orthogonality property of real simple characters,

an 7 P el @)
P

a(a,DeD"’)

5(D,D"). Q.E.D.

We have proved that basis functions {¢8} and {eB} for
irreducible representations of SN can be used to construct

antisymmetric functions of the form

® =) ¢.8
g BB

only if the irreps spanned by {¢B} and {GB} are associated
with conjugate Young diagrams.

Suppose that ¢ is & space primitive Ifunction ané 6, a
spin primitive. As discussed in the last chapter, spin func-
tions for the spin diagram D can be generated from 6 by oper-

ating on it with the set

BD = {eD '

S rsiS fixed, all r}

of matric basis elements, for arbitrary s. Similarly, space

functions for the diagram D conjugate to D can be generated

from ¢ by means of the operators
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(o ]

_ 1D -
B, = {etu]u fixed, all t} ,

for arbitrary u.

A space-~spin wave function of the form

_ D D
@ =] (e ,9) (e ©) (77)

r

will satisfy the Pauli Principle. For

pe = § (eeD ) (PeD o),
r

and, using (51),

But conjugate

P

o®) (eD e).

H Ue

ZYZ [P] P1Y (e

rij iz

diagrams correspond to dual irreps, soO

212 = e@ D, ,
=e(P)]]-] I (P ‘llzi-(e?u¢)(e§se)
ij r
= =) (113, (eD,0) (el @)

=e®]] 6. (2 o) (el o)
i% ij iu’’ 'Tis
= e(P)] (e7,9) (e).®)
L

= e(P)® .
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We assume that the spin primitive, 6, is chosen to be
an eigenfunction of §z. Then ¢ will be an eigenfunction of
§2 and §z’ since its spin components are generated by an
operator basis for a spin representation. Thus (77) shows

the construction of a SAAP by means of matric basis elements.

Simultaneous Eigenfunctions of £2 and §2

by Matrix Diagonalization

Since spin-free atomic Hamiltonians are spherically
symmetric, they commute with the orbital angular momentum
operators £2 and ﬁz. For this reason, it is usually conven-
ient in atomic calculations to use a trial wave function
which is an eigenfunction of ﬁz, ﬁz, §2, and §z’ It is easy
to extend the method of pages 59-67 to cover orbital angular
momentum.

The generai CI wave function is of the form (12):

¥ (NSMg) = ] TET c(o ,ma)Al¢ _(N)®_, (NSMS)] .

The sum over ¢ﬂ includes only space products containing dif-
ferent orbitals: no two space products are related by a permu-
tation. The wave function Y(NSMS) is general in the sense
that it may contain one configuration or many, depending on
the SAAP's included. It is already an eigenfunction of §2 and

A

Sz’ and we assume that the eﬂh have been constructed by one
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of the methods described earlier.

Each space product is an eigenfunction of £z: we write
¢n(NML)' If the summation includes only space products with

one value of ML’ then VY will be an eigenfunction of ﬁz with

that eigenvalue:

¥(N,M,S,Mg) = ] Z&c(qaw,w’autqsﬂ(N,ML)eﬂ&(N.s,Ms)1

It is possible to choose the coefficients c(¢ﬂ,nh) in
such a way that ¥ is also an eigenfunction of ﬁz. The pro-
cedure is similar to that used for spin functions. One cal-

culates the ﬁzfmatrix over SAAP's
Ale, (N, M )8, (N,S,MQ) ]

with N, ML’ S, and Ms fixed, then finds the linear combina-
tions of SAAP's that diagonalize the matrix.

The calculation of the ﬁz—matrix is more complicated
than that of the spin matrix, but, again, the computation is
greatly simplified by the space and spin conventicns we have

introduced.

. AZ_AA A A
Since L = L_L+ + Lz(Lz+l),

<A[¢wenh]l£%A[¢pedSJ> <£%A[¢weﬁh]LA[¢pedB]>

<22(6,0.0) lAL0 841>
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<AL6. 8., 11E%A10 801> = <€ £ (6,001 [ALo 8 ,1>

T 7o (78)

+ ML (ML+1) <¢1re,n:a !A[¢p6p:B] >
The second integral is

8 (6,00,)8 (7, 68) (27 /N 1), (79)

by equation (13). This leaves only the integral

AN

<L_Ly (08

jof

) ]A[¢pep18]>

o

-1 NS S
= (N!) 12: e:(P)[P]Tr,a'p,S<L_L+¢Tr|P¢p>

0
A
t>

where NS a

In terms of one-electron ladder operators,
_ R NS
I= g% <L—(1)L+(3)Qﬁl@ﬂh,dﬁ¢p> ,
the sums running over all electrons.

We define
1 if L_(1)L,(j)¢_ contains
Awp(i,j) = the same orbitals as ¢p;

0 otherxrwise.

Coan . T . . _
If Aﬂp(l,]) = 1, define Pij to be any permutation which con

verts ¢p into L_(i)L+(j)¢w. Then
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I=mn L3y (1,9)e@™) T e ™ .,
g% TP ij ngp ij ' 7wo,pB

or, since the matrices representing geminal permutations are

diagonal,
-1 . T mp, NS NS
I= ")) A (E3)e®i) [Pyal 0 g } €@ 6] g 4o
i3 GS:up
= 2°mn) 75 A (1,9 @I 1IN Lo . (80)
iJ o J Jj Tma,p

We have used equation (11).

Putting (79) and (80) into (78), we obtain the result
<Al6. 6. 1|2%416 ©,,.1>
TTQ p pB

= ()7L {2 (0 +1) 6 (616 ) 6 (v, 0B) (81)

NS } .

p A i) kige)
+ 2 gg Aﬁp(l’J)e(Pij)[Pij]w&,pB

Appendix E contains a Fortran listing for a program that
generates simultaneous eigenfunctions of L ’ ﬁz, §2, and §z
for any eigenvalues. Equation (81) is used in this program -
in Subroutine FLSQME - to calculate the ﬁz-matrix elements
between SAAP's. In all, the program contains six subprograms.
Their interrelations are shown in Figure 9.

Sample running times, to obtain eigenfunctions for

every eigenvalue L, are shown below:
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N S M, M Configuration  SAAP's  CPU time

S (sec)
2 1.0 0 p? 1 0.4
4 0 0 0 p? 2 0.6
4 0 0 O p3a 8 1.3
4 0 0 0 at 8 2.0
4 1 0 0 a* 7 1.9
6 0 0 0 sp>a? 34 8.4

It should be noted that these are "worst-case" times.
The CPU times include the internal processing of large
amounts of testing output. Also, higher values of IML[ would
reduce the number of orbital products required, and so lower
the running time.

Schaeffer and Harris (1968) have reported a method for
constructing L-S eigenfunctions as linear combinations of
Slater determinants, using matrix diagonalization. They deal
only with ML=L’ MS=S. Running times are comparable to those
reported here. Rotenberg (1963) wrote a machine-lanc¢ -age pro-
gram for the IBM 7090 to generate L-S eigenfunctions by means
of Lowdin projection operators. Running times for the exam-
ples above were not reported. Neither of these procedures, of
course, generates wave functions as linear combinations of
SAAP's.

All programs that generate L-S eigenfunctions require
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a great deal of storage if they are to deal with more than,
say, eight electrons. In fact, this seems to be the chief

limitation on their use. The program given in Appendix E is
designed to handle a maximum of eight electrons. A similar
program, but with different storage arrangements, is being

developed to handle as many as fourteen electrons.
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APPENDIX A: NOTATION
The symbol "4" is used to mean "is defined to be".
"Irrep" means "irreducible representation".

The set X = {xl, Xpr ees xn} is sometimes denoted

by X = {x,|i=1,2,...,n}

or by X {xilall i} .

The symbol "e" means "belongs to". For example, xiex

in (iii).

When a summation is written without explicit limits,
it should be understood to run over the entire set

to which the index belongs.

Dirac bra-ket notation is used for integrals:

<d.u. |v.v.>
ujl r's

i [f u;(l)u;(Z)vr(l)vs(2)d§ld§2;

~ _ r * * A
<uiuj[H]vrvs> ff ui(l)uj(2)Hvr(l)vs(2)d§ld§2.
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APPENDIX B: THE SYMMETRIC GROUP

The symmetric group, SN' consists of the N! permutations

of N objects. Here we consider permutations of electron la-
bels, as though electrons could be labelled.

Let a, b, and c be three ocne-electron orbkitals. By
a(l)b(2)c(3), we denote that space product in which orbital
a is occupied by electron 1, b by 2, and ¢ by 3. The trans-
formation that changes a(l)b(2)c(3) into the new product
a(3)b(1l)c(2), say, is a permutation of all three electrocas:
it replaces electron 1 by electron 3, 2 by 1, and 3 by 2.

One standard notation for this permutation would be

ambc = (32 3) awmb@em.

This is the so-called "two-row" notation. The same permuta-

tion is sometimes written (1 2 3
k+++
312 .

A more compact notation for the same example would be
a{3)b(i)c(2) = (1,3,2) a(l)b(2)c(3).

The symbol "(1,3,2)" is cyclic: it reads, starting at the
left, "electron 1 is replaced by electron 3, 3 by 2, and 2 by
1". In this notation, the permutation (nl,nz,...,nk) is
called a "k-cycle". Our example was of a 3-cycle. A 2-cycle
permutation interchanges two objects, and is called a

transposition. The identity, I, is a one-cycle.
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All permutations can be written as products of trans-
positions. For example, (1,3,2) = (1,2)(1,3) = (1,3)(2,3) =
(2,3)(1,2). If a permutation is the product of an even number
of transpositiong, it is said to be an even permutation;
otherwise, it is odd.

The cycle structure of a permutation is a list of the

cycles occurring in it, given in the order of decreasing cy-
cle length. The notation is similar to that for partitions

of the number N. The following are examples from S4:

permutation cycle structure
(1,3,4,2) {4}
(1,3)+(2,4) {2,2}
(1,2,3) = (1,2,3)-I {3,1}
(1,3) = (1,3)-I-I {2,1%}
I {143

The cycle structures of permutations can be used to
classify them: it can be shown that all permutations with
the same cycle structure are eguivalent. It is alsc true that
a permutation and its inverse have the same cycle structure.
Transpositions are their own inverses.

It is convenient to introduce a shorthand for manipu-

lating permutations. Our first example could be written
bca = (1,3,2)abc,

in which the orbitals are listed in the order of the occupy-
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ing electron labels. Operations with.permutations are simpli-
fiéd if, in this notation, the permuﬁation is read: "move
the orbital in the first position to the third position,
that in the third positidn to the second position, and that
in the second position to the first position". The result is
the same as before, but we think in terms of orbital permu-
tations.

Using the cyclic permutation notation, the symmetric
group for three objects, S3, consists of the following six
permutations: I, (1,2), (1,3), (2,3), (1,2,3), and (1,3,2),

where I is the identity. The multiplication table for this

group is
I (1,2) (1,3) (2,3) (1,2,3) (1,3,2)
(1,2) I (1,3,2) (1,2,3) (2,3) (1,3)
(1,3) (1,2,3) I (1,3,2) (1,2) (2,3)
(2,3) (1,3,2) (1,2,3) I (1,3) (1,2)
(1,2,3) (1,3) (2,3) (1,2) (1,3,2) I
(1,3,2) (2,3) (1,2) (1,3) I (1,2,3)

The antisymmetrizer for Sy is defined to be

A= @nt Je@e ,
P

where the sum runs over the whole group and €(P) is +1
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when P is even and -1 when P is odd. Since the sum extends
over a complete group, the antisymmetrizer is essentially

invariant under left- and right-multiplications by permuta-

tions:

pd = (n1)7t Ye(P)P'P = W)™ ¥ e@rlemypn
P P"

1

Wt e ] (2" = (DA .

P

Similarly, AP' = e(P")A .

From this it follows that A is idempotent:

Ad = wn He@rd= an We@e@A = Aan i+ = A.
P P P

We now find the Hermitian adjoints of permutations and
antisymmetrizers. Consider the N-electron integral <Pw[¢>,
where Yy and ¢ are well-behaved functions. The Hermitian conju-
gate of P, P', is defined by <Py|é> = <w|P+¢>. On the other
hand, the integral is a number and is unaffected by a permu-
tation of the dummy variables. Thus

<Pyle> = P l[<pyle>l = <P ipp|p o> = <u|P te>.
Comparison shows that P' = p~L,

It follows that the antisymmetrizer is self-adjoint:
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<Ay|e> = (1) LT (By<pylo> = (1) " e (@) <p|p Le>
P P

N e h<ylpre> = (v ety <y|Bro>
P! p!

<ylA¢> .

Thus .A+ =_A . Since AA =,4, it £ollows that
<AV|Ae> = <p|Ade> = <y|A¢>

We have merely summarized some important results needed
here. For a complete account of this material, the reader is

referred to the book by Hamermesh (1962).
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APPENDIX C: COMPUTER PROGRAM FOR

SERBER SPIN EIGENFUNCTIONS
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SUBPROGRAM 1,

('\«')ﬁﬂﬁ.“)ﬁ"\ﬁ."?fﬁ’ﬁﬂﬁf’?’?"’ﬂﬂﬁ-ﬁ(”iﬁﬂ

]

IMPLICIT REAL*8(F), INTEGER(A-E,G-~2Z)
DIMENSION PS(4)4L(1344),SEIGV(12), FLEIG(169),

FC(132,12)

% & & % %k % ¥ ¥ X ¥ %k k X ¥ %k X k. ¥k Kk k k k %k .k ¥ ¥k %-

SSQEIG GENERATES SERBER SPIN EIGENFUNCTIONS FOR USE
TN SAAP*S WITH NDOO DOUBLY-OCCUPIED ORBITALS: I.E,
SPIN FUNCTIONS ANTISYMMETRIC IN THE FIRST NDC GEMINAL

PATIRS.

INPUT -
NP =
NUMRER OF GEMINAL PATIRS, OR ONE-HALF THE NUMBER
OF ELECTRONS, WHICH IS ASSUMED EVEN-
NDQ =
NUMBER NF DOUBLY-OCCUPIED ORBS IN THE SAAP,
SKEEP =
TOTAL S OUANTUM NUMRER,
MKEEP =

TOTAL SZ-EIGENVALUE.

¥ & & %k %k X %k *k F ¥k %k % X %k ¥* % ¥ ¥ & % ¥ ¥ % ¥ ¥ ¥ *

FACT2 = 7,071067811865475D-01
TNP = NP + NP

TTNP = 2%&kNP

MAGMT = TABS(MKEEP)

NPS = C

SWEEP DECIMAL REPS 0OF PS'S
DO 40 DPS=1,TTNP

TD = DPS - 1

CONVERT DEC REP TO PS*S

PSSUM = ¢

DC 10 P=1,NP

PI = 2%k (NP-P)

PSP = TD/PI

PS(P) = PSP

IF(P,GT.NDO) GO TN ¢
IF(PSP,NE.O) GO 7O 40

T0 = TD -~ PSPx*xpP]Y

PSSUM = PSSUM + PSP

KEEP ONLY PS COMBINATIONS APPROPRIATE TOQ MKEEP
IE{PSSUM, LT. MAGMT) GO TO 40
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NPS = NPS + 1
GET SSO-FEIGENFUNCTIONS CORRESPONDING TO MKEEP AND
GIVEN PS?S
CALL SEIGEN(NP,PS,MKEEP,SEIGV,FLEIG,NPROD,L)}
IF{NPRONDLNE,0) GO TO 315
NPS = NPS - 2
GO T 40
15 NSF =0
DO 27 ISEF=1,NPROD
N2 = (ISFF=-1)%NPROD
IF(SEIGV(ISEF).NE, SKEEP) GO TO 27
NSF = NSF + 1
N0 30 IPROD=1,NPROD
20 FC{NSF,IPROD) = FLEIG(NZ2+IPROD}
27 CONTINUE
IF(NSF.EQ.C) GD TO 39

QUTPUT AVATLABLE AT THIS POINT -

NPS =

INDEX OF THE PATR~SPIN COMRINATION (PSC),
es{(pP) =

SPIR 0OF THE PTH GEMINAL PAIR,
NSF =

NUMBER 0OF SPIN FIGENFUNCTIONS HAVING TOTAL SPIN
SKEEP AND SZ-FIGENVALUE MKEEP, FOR THE PSC WITH
INDEX NPS.

NPRCD =
NUMBER QOF GEMINAL SPIN PRODUCTS (GEMPRODS)

FROM WHICH THE SPIN FUNCTIONS FOR THE PSC
LABELLED NPS ARF CONSTRUCTED.

FC(T4d) =
COEFFICIENT OF THE JTH GEMPROD IN THE ITH

SPIN FUNCTION FOR THIS PSCa

L(J,P) =
CODE LABEL FOR THE TWO-ELECTRON SPIN FUNCTION

OCCUPTED BY THE GEMINAL PATIR 'P? IN THE JTH
GEMPROD, THE CODE 1S AS FOLLOWS:

0" MEANS (AB-BA)/DSORT({2)

*27 MEANS {AA)

$2v MEANS (AB+BA}/DSORT(2)

t1s MEANS (RB).

2Q TF(NSF.EQ.O0} NPS=NPS-1
4C CONTINUE

RETURN

END
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SUBPROGRAM 2,
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lecC
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SUBRCUTINE SFIGEN(NP,SFIX,MTFIX,SEIGV,FLEIG,NPROD,L)

IMPLICIT REAL*B8(F), INTEGER(A-E,G-2)

REAL*8 DSOQRT

DIMENSION SFIX(4),LABFL(4),TS(4),TM(4),S(13,4),
M(13,6),L(22,4),FLINT(G1),SETGV(13),IDX{13),

FLEIG(16G)

* % x %k ¥k ¥ ¥ x ¥ ¥ * F Xk
SEIGFN RECEIVES PAIR-SPINS ANO TOTAL MS FROM SSSEIG,
AND FINDS SSQ-EIGENFUNCTIONS SATISFYING THAT DATA.

INPUT REQUIRED - TOTAL MS (MTFIX), PAIR~SPINS (SFiX
VELTOR), AND THE NUMBER 0OF GEMINAL PAIRS (NP),
ko ok ¥ % %k %k % ok *k ¥ ¥ Xk

THIS SECTION PRCODUCES NPRAD GEMINAL SPIN PRODUCTS A2F
THE SPECIFIED TYPE, THE NTH ONE HAVING THE PAIR-
FUNCTION LARELS (L(N,IV,I=I,NP), PAIR-SPINS
(S(NyI1,I=1,NP), AND PAIR-MS*'S (MI{N,I),I=i,;NP},
NPRAD = O

LLTMPY = &4%%NP

DN 200 Il=1,LLIMP]

TMT = 0
NMBR = T11-1
TN = NMRKRR

DN 170 12=1,NP

Pl = &4x*x(NP-T12)

LABEL(I2) = TN/PI

TN = TN = LABEL{IZ)*PI

TS(I12) = 1

IF(LAREL(I2).EQ.C} TS(I12)=0
IF(TSII2).NE-SFIX(IZ2)} G2 TC 200
TM(I2) = TS(I2¥=*(LABEL(I2})-2)
TMT = TMT + TM{1I2)

TFETMT-MTFIX) 200,18C,20C

NPRDD = NPROD + 1

20 100 12=1,NP

SINPR(ON, T2}
M(NPROD,I2)
L{NPRND,I2)
CANTINUE
IF(NPROD.NFe Q) GO TN 229
RETURN

TS(12)
T™(I2)
LABEL(IZ)

x %k %k % X & Xx %k 3% ¥ ¥
SSO-MATRIX BETWEEN GEMPRODS. STORED AS THE MATRIX
CINTE.
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* % % Kk % x ¥ ¥k ¥ ¥ =

COUNT = C

DO 60 12=1,NPROD

DN 560 I1=1,12

INT = 0

COUNT = COUNT + 1

ND = 0

N0 420 I3=1,NP
TF{L(I1,I3),NE,L(I2,72)) ND=ND+1
CONTINUE

IF(ND.NE.Q) GO TO 460

DIAGONAL ELEMENTS

on 450 13=1,NP

LRL = L(131,13)

IF(LRL.EO.CY GO TN 450
IF(LBL.LE. 2} ND=ND+1
CONTINUE

INT = MTFRIX*(MTFIX+41) + 2%NO
GO TO 540

OFF-NDIAGONAL RLEMENTS

IF{ND-2) 540,510,540

DD 620 12=2,NP
IF(TABS(M{ILI,I31-M(12,73)},GT.1) GO TO 520
I3M3 = 13 =1

DO 518 T4=1,13M2
TRIS(IZ,I3)4S(12,74)+S(12,13)+5(12,14),NE.&) GO TO 518
M124 = M{TI1,I3) + M(II,I14)

IF(MI34 . NE,M(1I2,13)+M(12,14)) GO TO 518
IF(IABS(M134).GT.,1) GO TQ 518

INT = INT + 2

CONTIMYE

CONTINUF

FLINT(COUNT) = INT

CNNTINUE

IF(NPRON=-1) 970,£0C,,1L0

FLRIG(1) = 1.00C

0 7O 420

B & % e ok & & sk %k o4 o o ¥ &
DIAGONALIZE THL SSQ-MATRIX, GET SSO-EIGENFUNCTIONS
e K ok ok ok ¥ & K ok %k ¥ P+ %k ¥ X

CALL FIGEN(FLINT,FLFI5,NPROD,1,1DX,1,00-14)

DY 640 T1=1,NPPAD

N1 = TI#(11+1)/2

FN = FLINT{(NI)
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FD = (DSORT(1.0DC«4,000*%FD)-1,0D0)/2,C0DC

STIGV(I1)Y = ¥D

FN = FD = SEIGV(I1)

TF(FD.GT.0,5N0) SEIGV(Il) = SEIGV(I1) + 1
640 CONTINUE

RETURN
$70 STOP

END

SUBPRNOGRAM 2,

C (USE SUBRNUTINE ETGEN, LISTED IN APPENDIX £)
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APPENDIX D: COMPUTER PROGRAM FOR THE EVALUATION OF
COEFFICIENTS IN THE ENERGY MATRIX ELEMENTS

BETWEEN SAAP'S
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SURPROGRAM 1.

X

SUBROUTINE MED]1(N,LABLIM,LBL,LAF,RAF,LOP4ROP,A,B,NGP,
1FGC,TESL)

IMPLICIT REAL*B(FsP)INTEGER{A~E,G~-0G,Q-Z)

DIMENSTON LBL{2,8),NOCC(2,20).,0RB(2,30),ELOBCC(2,30},
NO(2),IDENT(1,1),D0RB(2,2),DEL(2,2),LIST(B),E(8,52),
IRR(14114ISS{343)4IRS{141),IST(1+,1,8),I0(%,48),
BLANK(120)4NGP(2),FGC(2+20)TESL(2+20+4)
FSC(241+920) 9SL(242G45)+PD(1,30),PRRSSE(1+30+301,
PRS(1,11,PRRSSD(1+2430),PRRSS(1,1),PRSRS(1,1),
DBLS(2)

COMMON BLANK,EPP.S1 yA,R,LOCL,LOCLP,NLPROD,NRPRODyNP,

1 TNPSsTTNPSNCYC,FACT FNORM,FPAB,FACT2 0RBsNOCC,FSC,SL

[ 30N I SRR VS B NP

F ok o X oxx &k o ok %k x ok ok ¥ %k % &k ok % ¥ Xk kx &k ¥ ¥k %k ¥ &

CALCULATES COEFFICIENTS QOF ONE- AND TWO-ELECTRON
INTEGRALS OCCURRING IN AN ENERGY MATRIX ELEMENT

BETWEEN TWO SAAP'S CONSTRUCTED FROM ORTHONORMAL

ORBITALS AND SERBER SPIN FUNCTIONS.

VERSION Ae S/770Ce. CONTAINS TESTING OUTPUT.

INPUT -

N =
NUMBER OFf ELECTRONS (ASSUMED EVEN)
LBL{SIDE,.,EL) =
NUMERICAL LABEL OF ORBITAL CONTAINING ELECTRON
CEL* IN LEFT SAAP (SIDE = 1) DR RIGHT SAAP
{SIDE = 2}).
LABLIM =
THE HIGHEST NUMERICAL ORBITAL LABEL USED.
LAF =
INDEX LABELLING THE LEFT SAAP,
RAF =
INDEX LABELLING THE RIGHT SAAP,
A=
INDEX LABELLING THE LEFT SPIN FUNCTIONe
B =
INDEX LABELLING THE RIGHT SPIN FUNCTION,
LOP =
INDEX LABELLING THE LEFT ORBITAL PRODUCT.

ROP =
INDEX LABELLING THE RIGHT ORRITAL PRODUCT.

NGP(SIDE) =
NUMBER OF GEMINAL SPIN PRODUCTS IN SPIN FUNC-
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TION ON LEFT (SIDE=1) OR RIGHT (SIDE=2),
TESL(SIDE,GP,MU) =

NUMERICAL LABEL FOR THE TWO~ELECTRON SPIN FUNC-

TION CONTAINING THE GEMINAL PAIR (2*MU-1,2*MU}

IN THE GEMINAL SPIN PRODUCT 'GP', APPEARING IN

THE SERBER SPIN FUNCTIGN ASSOCIATED WITH *SIDESY,
FGC(SIDE,GP)} =

COEFFICIENT OF THE GEMINAL SPIN PRODUCT *GP?

IN THE SERBER FUNCTION INDICATED BY °*SIDE'.

UPDATED VERSTIONS OF THIS PROGRAM MAY BE OBTAINED
THROUGH THE THEORETICAL CHEMISTRY GROUP, IOWA STATE
UNTVERSITY, AMES, IOWA,

F ok x ¥ %k 3k H % X% % 5k ¥k ok ko & ok k ok ¥ % ¥k Xk %k & ¥ ¥ ¥ X X

FACT2 = 7,0710678118654750~-01
NP = N/2

NLPROD = NGP (1)

NRPROD = NGP(2)

TNP = N
TTNP = 2%%NP
90 10 S=1,2

DO 10 L=1,LABLIM
1C NOCC(S,L) = 0
WRITE(3,411}
11 FORMAT('2%,%% % % % % % % % % % % % % % % ¥ % % %¢///)
WRITE(3,12) N
12 FORMAT(' MED1 INPUT'///' * * % Xx%//
i ¢ NUMBER OF ELECTRONS- ',I1///)

0O 18 SIDE=1,2
NOGP = NGP(SIDE)
IF{SIDEL.EQe21 GO 70 i4
WRITE(3,12) (LBL(I,EL),EL=1,N})
13 FORMAT(* LEFT SAAP'///SX,* ORBITAL PRODUCT-',GX,

1 8(I1z2,2X}))
GO 7O 1¢&é
14 WRITE(3,15) (LBL{2,EL),EL=14N)
15 FORMAT(* RIGHT SAAP'///2X,' ORBITAL PRODUCT-*,9X,
1 8(12,2X))
16 WRITE(3,17)
17 FORMAT(///5Xe* SPIN EIGENFUNCTIGN=-*)
D3 18 GP=1,NOGP
FSC(SIDE,1,6P) = FGC(SIDE,GP)
DO 171 MU=1,N?P
171 SL(SIDE,GP,MU) = TESL(SIDE,GP,MU)
18 WRITE(3,19) (FGC(SIDE+GP)Y(TESLISIDE,GP,MU) ¢MU=14NP))

-

19 FORMAT(28X+D25416496X,411)
WRITE(3,12%)



s NeNeXeNeNa!

191

1

2/°*

20

40

s0

51 FORMAT(//tX,* FCR SIDE

1

NN
[SY )N )

&0

70

170

FORMAT(®19,9% % % & 3% % % % % % % % % % % %X % % %V///

* INTERMEDIATE RESULTS*///%% % * % % ¥ ¥ ¥ % ¥ X
ORBITAL DATA BLOCK')

MAKE LISTS OF LEFT AND RIGHT ORBITALS (ORB),

OCCUPANCIES (NCCC), AND HIGHEST-NUMBERED ELECTRON

LABELS OCCUPYING ORBITALS {(ELGCC).

S =1

NORB = ©

00 50 EL=1.N

L = LBL(S,EL)
SW =0

IF(NORRe EQeO) G
DO 30 0=1,NCRP
IF(ORB(Ss0)eNE.
SWw =1

CONTINUE
IF(SWeEQe O} GO
NOCC(S,L) = NOC
ELOCC(S,L}) = EL
G3 TC 50

NNRB = NORB + 1
ORB(S,NCRB) = L
NOCC(S,L) = 1
ELOCC(S,L) = EL
CONTINUE

NG(S) = NORB
WRITE(3,51) S,N

* ORBITALS- !
OBLS{(S) = 0
D0 52 I=1,NOR8
0 = ORB(S,I)
IF(NOCC(S+0).EQ
WRITE(2,53) O,
FORMAT{2iXy12,41
IF(SeEQe2) GO T
S =2

G0 TO 20

S =1

FNORM = DFLCAT!{
FNORM = DSQRT(F

FACT = (DFLOAT(
BL = DBLS(L)
ODIFF = C

SP = 3-§

DO 100 L=1,LABL
D = NOCC(S,sL)-N

0 70 40

L) GG TO 30

TO 4C
Cs,L) + 1

0(s)

///30X," ORB NGCC

«2) DBLS{S) = DBLS(S) + 1
NOCC(S,03,ELOCCES,0)
OXy1148Xs121%

0 60

2%% ({DBLS{1)+DBLS(2)))
NGORM)
N=1))*FNCRM

iM
0CC(SP,L)

'y1i,%, THERE ARE ',12,
ELOCC*//)

wrr/
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80

0

100

110

111

112

ii3
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IF(D.LFe0) GO TO 100
DIFF = GIFF4D
IF(DIFF.LEs2) GO TO 80
IDENT(LOP,ROP) = 3

WRITE(3,71)
FORMAT(///7//* *%%%x% DIFF IS GREATER THAN 2- ¢,

1*MED1 SETS IDENTC(LOP.ROP) = 3 AND QUITS *kk&%kt)
RETURN
EL = ELOCC(S,L)}
IF(DeGTel¥ GG TG 90
DORB(S,DIFF) = L
DEL(S,DIFF) = EL

GO 70 100

DORB(S,1) = L

DORB(S,2) = L

DEL(S,1) = EL-1
DEL(S,2) = EL

CONTINUE

IF(DIFFe EQeC) GO 7O 11C
IF(S«EQe2) GO TC 110

S =2

G0 70O 7C

IDENT(LOP,ROP) = DIFF
WRITE(3,111) DIFF

FORMAT(////5X,* ** DIFF = IDENT(LOP,RCOP) = ',I1}
IF(DIFF. EQeQ) GO 7O 120

WRITE(3,112)

FORMAT(//20X,* DIFFERIMG ORBITALS Sy

1*ELECTRONS IN DIFFERING ORBITALS'/)
DO 114 S=i,2
WRITE(3,113) S,(DORB(S,1),I=1,DIFF)
FORMAT(20X,®* SIDE *411,10X+12+2X,12)

114 WRITE(3,115) (DEL{S,I),I=1,DIFF)

115
120
120

140

15¢C

i51

FORMAT( %49 ,72X,1242X,129

DO 130 EL=1,N

LIST(EL)Y = LBL(1,EL)
IF(DIFFeEQeC) GO 7O 150

DO 140 EL=1,DIFF
LIST(DEL(2,EL)) = DORB{2Z,EL)

CONVENTION - PERMUTATION CONVERTING RQGP 7O LOP IS
(E(1,1),E(1,2)) * * % (E{NCYC,I),E{NCYC,2))e
TIe Eey HIGHEST-NUMBERED CYCLE OPERATES FIRST ON ROP,

NCYC = C

WRITE(Z2,151)

FORMAT(/////* PERMUTATION BLOCK®//)
D0 170 CHK1=i,N

DO 160 CHK2=CHK1,4N
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IF(LBL{2,CHKI )eNE,LIST(CHKZ})) GO TO 160
IF(CHK14.EQeCHK2) GO TO 170
NCYC = NCYC+1
E(NCYCy1) = CHK1
E(NCYCy2) = CHKZ2
SAVE = LIST(CHK1)
LIST(CHK1) LIST(CHKZ)
LIST(CHKZ) SAVE
GO 70 170
160 CONTINUE
170 CONTINUE
EPP = (-=13)%xNCYC
D0 1701 S=1,2
1701 WRITE(3,172) S.(LBL(S,EL),EL=1,N)
172 FORMAT(20X,* ORB PRGOD ",11,4X,8(2X,121))
WRITE(32,1721) NCYC
1721 FORMAT{(//720X,' NCYC = *,I1}
IF(NCYCe EQe0} GO TO 1731
WRITE(3,173) ({E(CYC,S),8=1,2)},CYC=1,NCYC)
173 FORMAT(///20X,* PERMUTATION 70 ALIGN RIGHT PROBD WITH',
1' LEFT PROD~ *,8(%(',21I3i,°') *}))
1731 FPAB = FME(O,E)
WRITE(3,174) A,B,FPAB
174 FORMAT('0%*,21Xy11,%9',11,*-ELEMENT OF SPIN REP MATRI',
1'X FOR ALIGNMENT PERMUTATION IS FPAB = ',D25,16)

WRITE(3,175)
175 FORMAT(//77/* P-COEFFICIENTS AND OTHER DATA REQUIRED?',

i* BY CI1'//)

D = DIFF+1
GC 70 (200,300,4G0),D
LOP = ROP

200 DO 210 C=1,N
21C ID(LAF,0) =0
NG1 = NO{(1)
WRITE(2,211} NOI
211 FORMAT(ZOX,' INSTRUCTION BLOCK 200 NOl = ',11/)
D0 220 CP=1,NC1
LP = DORB{(1,0P!}
LOCLP = ELGCC(:,LP}
ID{LAF,RAF) 1S LABEL OF ORBITAL INDEXED *0P®*, THIS
LABEL IS ALSQ CALLED 'LP*,
iD(LAF,0P) = LP
WRITE(3,212) 0OP,LP
212 FORMAT{3CXs"' OP=%,1i4"'y LP=0RB{1,0P)="'412,"' - )
1'CALL FP1Y)
PD(LAF,0P) IS THE COEFF OF INTEGRAL (LP/H{1)/LP)
PD(LAF,CP) = FP1(Q,LP,LP4NyE,NDI}
WRITE(3,213) LAF,QP,TD(LAF,0P),LAF,0P,PD(LAF,0P)
213 FORMAT{35X,* ID{(*yI14'+%',11,') = *,12/735X,
1¢ PO{YyI1a"y*'y11,%) = ?4D25.16)
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DO 220 0=0P,NO1

L = 0ORB(1.,0Y

LOCL = ELQCC(1,L)

IF(LOCL.NELLOCLP) GO 70 214

IF(NODCC(1sLY¥.EQe2) LOCL = LOCL-1

PRRSSE(LAF,0,0P), WHERE Q.GE4OP, IS COEFF OF INTEGRAL
(L,LP/G(3,2¥7L,LP), IN DIRAC NOTATION.
PRRSSE(LAF,0,0P) = FP2(04,L Py 4LP40,c1}

WRITE(3,221) LAF,0,0P,PRRSSE(LAF,0,0P)
PRRSSE(LAF,0P,8) 1S COEFF OF (L,LP/G(1,2)/LPyL1}.
PRRSSE(LAFs0P,0) = FP2{G4L4LPyL4LPy1,E)

WRITE(3,221) LAT,0P+0,PRRSSE(LAF,0P,0)

FORMAT(35X,"Y PRRSSE(",T1,0,%,11,%y%,11,*) = ',025.15)
RETURN

LGP AND ROP DIFFER 8Y OME ORBITAL, VIZ.
IRS(LAF,RAF) = L IN LOP,

IRS(RAF,LAF} = R IN KkQOP.

L = DORB{(1,1)
IRS(LAF,RAF)

R = DORB(2,1)
IRS(RAF,LAF) = R
LGCL = DELI1,1)

L

NOI = NO(1)
NO2 = NO(2)
I =0

D8 320 01i=1,N01
LP = ORR(1,01)
00 310 02=1,.N0O2
IF(LP.EQ.TORB(2,02)) GO TC 220
CONTINUE

GQ TO 330

I = J+1
IST{LAF,RAF,1)
ViZles LPe
IST(LAFLRAF,I)

ITH ORBITAL COMMON 70O LOP AND ROP,

Le

; CONTINUE

NI = 1
PRS{LAFRAF)
PRS{LAF,RAF}
D0 240 I=1,NI
L3CLP = ELOCC(1,LPi

IF(LCCLP.NEL.LOCLY GO TO 337

IF{NOCC(1,LPl.EQe2) LOCLP=LOCLP-1
PRRSSD(LAFIRAF,1I} COEFF OF (LJ4LP/G(1,2)/R4LP).
PRRSSDI{LAF,RAF,I}) FP2{i,L4LPsR4LP,0,E)
PRRSSD{RAFLLAF, 1} COEFF OF (L,LP/G{1,2V/LP,RIs
PRRSSD(RAFSLAF,1) FP2(14LoLP,R,LP,1,E)

RETURN

COEFF OF {(L/H{1}Y/R).
FPI{lsLsRyNyE,NCI)
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{LOP AND ROP DIFFER BY TWO ORBITALS, VIZey

IRR(LAF4RAF) = L AND TISS(LAF,RAF) = LP 1IN LOP,

TRR{RAFJLAF) = R AND 1ISS(RAF,LAF) = RP 1IN ROP,
4QC LP = DCORB{(1,2)

ISS{LAF4RAF) = LP

WRITE{(3,410) LAF.RAF,LP

410 FORMAT(25X,* ISS('911,'9%,12,°)

RP = DORB(2,2)
ISS(RAF4LAF) = RP
WRITE(3,410) RAF,LAF,RP
L = DORB(1,1)
IRR{LAF,4RAF) = L

WRITE(2,420) LAF,RAF,L

420 FORMAT(3SX,' IRR(',T1,"',%,I1,%)

R = DORB(2,1)
IRR(RAFSLAF) = R
WRITE(34420) RAF4LAF,R
LOCL = DELE1,1)

LOCLP = DEL(1,2)

C PRRSS(LAFLRAF) = COEFF OF (LoLP/G(1,2)/R4RP)s
PRRSS(LAF,RAFY = FP2(24L4LPyRyRP4GHE)
WRITE{3+430) LAF,RAF,PRRSS(LAF,RAF)

420 FORMAT(2REX,® pRRSS('QIl"?',Il"; = 74,025,169}
PRSRS(LAFLRAF) = COEFF OF (LsLP/G(1,2)/RP4R),
PRSRS(LAFJRAF) = FP2{24L4LPRsRPy1,E)
WRITE(3+440) LAF4RAF,PRSRS(LAF,RAF)

440 FORMAT(35X,* PRSRS{*,11,%,',1I1,%}) = *,D25.161)
RETURN

OO

'vI12)

1,12)

(@]

END

SUBPROGRAM 2.

DOUBLE PRECISION FUNCTION FPL{(DIFF,L,RsN,P,NO1}
IMPLICIT REAL*B(F)},INTEGER(A-E,G~-Z}

DIMENSION ORB(2,30),P{8,214NOCT(2,30)+BLANK{120)
COMMGN BLANK,EPP,PL,A,8,L0CL,LOCLP4NLPROD,NRPROD,NP,
1 TNPL,TTNP,NCYC,FACT,FNORM,FPAB,FACT2,0RB,NOCC
CALCULATES COEFFICIENT OF ONE-ELECTRON INTEGRAL
(L/H(1)/R)e LOP AND ROP DIFFER BY DIFF QRBITALS.

e e NaXe

F = 1,000
g =1L
iF(DIFFe EQeQ) GO TO 25
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F = 2,000
0 =R
FP1 = 0.0DO

IF(NDCC(1,L)NE.2) GO TO 30

FPl = 4.0D0 * FPI(L,L,C,5L,P,0)/F
DO 50 I=1,N01

LP = ORBI(1,T1)

IF(LP.EQeL) GO TO 50

FD = 1.0D0

IF{DIFFL,EQ.0) GO TO 40
IF(LP.EQ.R) FD = 2,000

FP1 = FP1 + FO*FPI(L,LP,C,LP,4P,0)
CONTINUE

FP1 = FP1/FACT

RETURN

END

SUBPROGRAM 3,

O e NeNaNeNe!

300C

DOUBLE PRECISION FUNCTION FP2(DIFF,L,LPyRyRP,SW,P}

IMPLICIT REAL*8(F), INTEGER(A-E,G-Z)

DIMENSION P(8,2),0RB(2,30),NOCC(2,30)4yBLANK(120C}

COMMON BLANK,FPP,PL,A,B,LOCL,LOCLP,NLPROD,NRPROD NP,
TNP,TTNP,NCYC,FACT FNORM, FPAB,FACT2,0R84yNGCC

CALCULATES COEFF OF INTEGRAL (L.LP/G(1,2i/R,4RP) IF
SW=0, OR OF (LJLP/G{(1,2)/RP,R} IF SW=l, LOP AND ROP
DIFFER BY DIFF CRBITALS.

FC = 1.000

IF(LeEQeLP) GO TC 310
IF{R,EQLRPY GO TC 225

GO T3 350

IF(NOCC(1,.L)eEQe2) GO TO 325
FSTR = 0.0DC

GO TO 375

FC = 2.000

IF({SWeEQel) GO TO 375

FSTR = FC * FPI(L,LP4R4yRP,P,SW) / FNORM
FP2 = FSTR

RETURN

END
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SUBPROGRAM &,

DOUBLE PRECISION FUNCTION FPI(LyLPyRyRP,P,SW)
IMPLICIT REAL*8(F)y INTEGER(A-E,G-2)

NDIMENSION NOCC(2,30),,P(8,2),0RB(2,30)yBLANK{120)
COMMNN BLANK,EPP,PL,A,B,L0CL,LOCLP,NLPROCsNRPROD,NP,
1 TNP,TTNP,NCYC,FACT,FNORM,FPAB,FACT2,0RByNOCC

CALCULATES QUANTITY
(2%%{PRS{LJLP)I+PRS(RHRPI+PRS(LOPM} )} * EPP *

* FME(SW,P,A,8)
WHERE
PRS(L,LP) = NO. DIFFERENT DCUBLY-OCC ORBITALS REPRE-
SENTED BY L AND LP (IF L=LP, THIS NUMBER IS ZERO),
PRS(LOPM) = NO. OF DOUBLY-OCC ORBITALS IN LEFT ORB

PRON AFTER L AND LP ARE REMOVED,

EPP = 41 OR -1 IF P IS AN EVEN OR ODD PERMUTATION,
FME(SW,P,4,8) = (A,B)-ELEMENT OF SPIN REP MATRIX F0OR
PERM 'P' IF SW=0, OR FOR PERM (14J)%P IF SW=1 (WHERE

1 AND J ARE THE ELECTRONS OCCUPYING L AND LP IN LEFT
ORB PROD).,

OO0 ANO0OA0

WRITE(3,1) L4LPyRyRP,SHW
1 FORMAT(80Xs"' FPI('5124413,%3)=")
FMATEL = FPAB
IF(SWeEQeO) GO TO 1C
FMATEL = FME(1,P)
10 PWR = PL
IF(LeEQeLP) PWR = PL-1
PRRP = NOCC(24R) + NOCC(Z4RP) - 2
IF(ReEQeRP) PRRP=0
FC = DFLOAT{(2%*{PWR+PRRP))I*EPP)
FPI = FC * FMATEL * (DFLOAT((-1)**SW))
WRITE(3,19) PWR,PRRP,SW,EPP,FMATEL
19 FORMAT(R0X,* 2%%(*,12,% +%,12,% ) * (=1)%%%,11,
1 v x 8,72,' ¥ ',DiZe.6)
RETURN
END



SUBPROGRAM 5,

DOUBLE PRECISION FUNCTION FME(SWLE)

IMPLICIT REAL*8(F), INTEGER(A-E,G-2)

DIMENSTION FSC(241,2C),L(2+20+4),T(4),M(4&),SL(8)},
1 SEP(161,F(8,2) ,FCBEFF(1¢),NOCC(2,30),0RB{(2,+30),

-~

2 BLANK{120)
COMMON BLANK.EPP,PL,A,B,LOCL,LOCLPyNLPRODyNRPRGDoNP,

1 TNP,TTNPJNCYC,FACTFNORM,FPAB,FACT2,0RBsNOCC,FSCyL

CALCULATES (A,B)-ELEMENT QF SPIN REP MATRIX FOR PERM
'pr IF SW=C, FOR PERM (I,J)*P IF SW=1, WHERE I AND J
ARE THE ELECTRONS OCCUPYING ORBITALS L AND LP IN THE
LEFT ORB PROD.

ACOOHONOO

FME = 0.0D0

D0 400 LPROD=1,NLPROD

DO 400 RPROD=1,NRPROD

FPMAT = 0.0D0

IF(NCYC.NEsO) GO 7O 30%

IF(SWeEQ.1Y GO TG 305
Cc WHEN NCYC=0, PERMUTATION IS TAKEN TO BE THE IDENTITY,
C UF SW=0D. ’

DO 301 12=1,NP

IF(L(1,LPROD,1I3)aNEeL{2,RPROD,I3}) GO TO 370

201 CONTINUE
FPMAT = 1,000
G0 T4 370

305 DO 3é5 SIDE=1,2
PROD = LPROD
IF(SIDE.EQe1) GO TO 306
PROD = RPRAD

3C6 COUNT = C
C FGR FIXED SIDE (LEFT OR RIGHT) AND GEMPROD, SWEEP ALL

c SEPRODS AND CONVERT SUITABLE DECLABELS TO BINLABELS

DO 360 I3=1,TTNP
IM = I3 - 1
DO 310 I4=1i,NP
PI = 2%*x(NP-14)
T{I4) = IZ2M/PI + 12
IF(L{SIDE,PROD,I4).NEsO) GO TO 207
S =20
60 TO 208
307 § = 1
308 M({14) = S*(L{(SIDE,PROD,I14)-2)
IF(T(I4)eEQel) GO TO 330
SKIP SEPROD LABELS WH ARE NOT ASSOCIATED WITH THE

GIVEN GEMPROD

OO0
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IF{M(I4)eNEsC) GO TO 3€C

I3M = I3M - T(I4)*PI + PI

COUNT SEPRODS ASSOCIATED WITH GIVEN GEMPROD

COUNT = COUNT + 1

FOR EACH SEPROD KEPT, GENERATE THE SINGLE-ELECTRON
SPIN FUNCTION LABELS (SL'S) AND THE COEFFICIENT (FC)

FC = 1,06D0
DO 230 14=1,NP
TI4 = 2%14

TI4M: = TI4 - 1

TF(M(I4)aNEs O} GO TO 31°
IF{T{I4)aNEse2) GO TO 325

SL{TI&4MY1)Y = O

SL{TI4) = 1

FC = FC*FACT2
IF(L{SIDE,PRODy1I41eEQe2}) GO TO 330
FC = =-FC

GO TN 330

SL(TI&ML) = 1
IF(L(SIDE.PROD,I4})aEQe3) GO TO 320
SL(TI4M1) = 0O

SLI{TI4) = SL(TI4MY)

GO0 TO 330

SL(TI4MI) = 1

SL(TI4}) = 0

FC = FC*FACT2

CONTINUE

IF{SIDEeEQa1) GO TO 340

IF SIDE = 2, PERMUTE THE SL®*S
IF(NCYC. EQ.0) GO TO 3327

DO 326 K=1,NCYC

T = NCYC + 1 - K

TEMP = SLIE(I,2))

SL{E(1,2)) SL(E(I,1))

SL(E(TI,1})) TEMP

IF{SW+EQe D) GO TO 24C

TEMP = SLALOCL)

SL{LOCLY = SL{LOCLP)

SL(LOCLP) = TEMP

SEPROD = €

DO 345 14=1,TNP -
SEPRCD = SEPROD + SL(I4}*x(10=x(TNP-14))
IF SIDE=1 (LEFT), STORE SEPROD AS SEP(COUNT), FC AS
FCOSFF{COUNT)

IF{SIDE.EQqs2) GO TO 350

SEP({COUNT) = SEPRGD

FCGEFF(COUNT) = FC

GO TO 360

CONTINUE

DO 355 14=1,NSPL
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IF(SEPRODeNEe SEP(I4)) GO TO 3255
FPMAT = FPMAT + FC*FCOEFF(I4)
355 CONTINUE

360 CONTINUE
IF SIDE=1y STORE NUMBER OF SEPRCDS ASSOCIATED WITH

LEFT GEMPROD

IF(SIDE.EQe2) GO 7O 365

NSPL = COUNT
3é5 CONTINUE
37C FME = FME + FSC({1,A,LPRODI*FSC(2,B,RPROD)I*FPMAT
400 CONTINUE

RETURN

END

SAMPLE DATA CARODS

&4 0 1 2 2 &

2 3

0. 57735026918696257D 0©C 1 3
=Ce 57735026918962570 00 2 2

Ce5773502651896257D 0OC 3

4 0 3 1 2 &

2 2

0.577350G2691896257D0 0C 1 2
~Ce £7735026918962570 00 2 2

Ce 57735026918962570 CO 3 1
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APPENDIX E: COMPUTER PROGRAM FOR GENERATING
SIMULTANEOUS EIGENFUNCTIONS OF SPIN AND ORBITAL

ANGULAR MOMENTA AS LINEAR COMBINATIONS OF SAAP'S
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SUBPROGRAM 1,

IMPLICIT REAL*8(F) o INTEGER({A-E,G-Z)

REAL%E DSORT

DIMENSION NON(8),L(20,8),ML{2C,8},LL(20,8),
NSPROD(5,16),SL(2+23,4),FSC{2,13,13),NSEF(ES,16),
MSE2+41394) 4PRS(5420).NOCC{(111),PL(5,20)4NPS(5),
FLINT(1275).NLP(S),LON(8),FLEIG(2500)BLANK(4),
IDX{50) PSCODE(5:26).M(8)+SLOISK(5+26913+4),
FSCDSK(54+16,13,13)

COMMON FSCoSLIaMS,ML.L,LLsNSPRODyNsTTNP,PL

N QN

% = ¥ %k & X % %k K %k sk *k k k %k %k K x k k ¥ ¥ ¥ ¥ % ¥k ¥ ¥ ¥

LSE2

THIS PRANGRAM CONSTRUCTS SIMULTANEOUS EIGENFUNCTIONS
CF LSG. LZ, SSQy AND SZ, THESE EIGENFUNCTIONS BEING
LINEAR COMBINATIQONS OF SAAP'S CONTAINING A SPACE PRO-
DUCT AND A SPIN EIGENFUNCTION, THE SPIN FUNCTIONS
SPAN A SERBER-TYPE REPRESENTATION OF THE SYMMETRIC

GROUP.

INPUT IS THE NUMBER QOF ELECTRONS (N}, TOTAL S (STY,
TOTAL MS (MST7T), TOTAL L (L7T), TOTAL ML (MLT)}, HIGHEST
LON GCCCURRING (HIL), HIGHTZST NQN OCCURRING (HIN),

AND THE NUMEER OF CONFIGURATIONS (NCGONF)e N IS
ASSUMED TO BE FEVEN.

FOR EACH CONFIGURATICN, THE PROGRAM NEEDS THE NUMBER
OF ORBITALS REQUIRED TO SPECIFY THAT CONFIGURATION
(NMNP) AND THE LIST OF NONT'S AND LON®S,

NOTE TO THE USER - THIS DFCK IS DIMENSIONED TO

HANDLE MOST CASES OF INTEREST WITH UP TO 8 ELECTRONS,
CERTAIN CASES MAY REQUIRE HIGHER DIMENSIONS. THE
ARRAYS 'FSCDSK® AND *SLDISKY SHOULD BE PLACED IN EX-
TERNAL STORAGEe. THEY MAY THEMSELVES BE STORED IN BULK
CORE, BR THEIR FUNCTION MAY BE PERFORMED BY TAPE OR
DISK. STATEMENTS INVOLVING THESE ARRAYS ARE INDI-
CATED 8Y SCTEMP' MARKERS.

UPDATED VERSIONS OF THIS PROGRAM MAY BE OBTAINED
THROQUGH THE THEORETICAL CHEMISTRY GROUP, IOWA STATE

UNIVERSTITY., AMES, IOWA.

¥ %k &k %k %k %k % & F % %k 3k ¥ x %K ¥ %k x %k ¥k ¥k ¥ % ¥ k ¥ kX & x

ﬁﬁﬁ('\ﬁﬁﬁﬁﬁﬂﬁﬁﬂﬁ(')f"tﬁ{')('\ﬁﬁﬁﬁﬁﬂﬂﬁﬁﬁﬁﬁﬂﬂﬁﬁﬁﬁﬁ
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FOLLOWING IS BLOCK 7O SELECT ORBITAL PRODUCTS FOR
GIVEN MLT, INDIVIDUAL LON'S, SUBJECT TO CONDITIONS
THAY DOUBLFS ARE LISTED FIRST, THAT DOUBLES ARE
LISTED WITH ASCENDING LABELSs AND THAT SINGLES ARE
LISTED WITH ASCENDING L ABELS.

PEAD(14907) NyST MSTH LT 4MLTHHILLHIN,NCONF
9Ci FORMAT(g15) '
WRITE(3,902) NyHINHILs SToMST,LT,NLT+NCONF
QC2 FORMAT(///7/7/77777% PROBLEM DESCRIPTION-'//710X,12,
1 v ELECTRONS, HIGHEST NQN = ',131,%, HIGHEST LON = ',
2 T1/7725Xe 18T = 1,71 +EXe"™MST = 1,12/25%X,'LT = %,12,
2 LXG'MLT = v,12//726X,11,' CONFIGURATIONS'Y
ND2 = N/2
TTNP = 2 %% ND2
FACT2 = 7.0710678118654750~-01
RILPL = HIL + 1
HM = 2&HIL + 1
LMMAX = (HIL+1)%%2
LABLIM = HIN¥*(HIN=-1)*(2*HIN-11/6 + LMMAX

NPL = N

SWEEP CONFIGURATIONS
DO 113 C=1,NCONF
COWNT = O
NRAF = 0
NLPROD = C
READ(1,SCC) NMNP,, (NQM{MUY,LON(MU) , MU=1, NMNP})
GOO FORMAT(TI2,2X+20{2I141XY)
WRITE{3.9023) CL(NON{MUI,LON(MU) ,MU=1,NMNP)
CQ2 FORMATU//// /777770 ) skskdededdkfpdsikdhirkRkeixgkkxt/f/f
1 v CONFIGURATION *4,11,'- '914(211,1X))
WRITE(3,904)
Q04 FORMAT(/7777)
NP = N - NMNP
NPP]l = NP + 1
NPP2 = NPP1 + 1
NTP NMNP - NP
LM HM =% NMNP

it

SWFEP DECIMAL LABRELS FCR SPACE PRODUCTS, KEEPING
ONLY THOSE WHICH SUIT THE INPUT DATA FOR THE GIVEN
CONFIGURATICN

DO 4 MU=1,NMNP

4 M(MU) = = LON(MU)
U =1
vV = 2

€ NLPROD = NLPROD + 1
DO 8 DRB=1,LABLIM
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NQCC{ORB) = O

MSUM = O
D3 10 MuU=1l,NMNF
EM = M{MU)

ML{NLPROD,MU) = EM
IF{TABRS(EM).GT.LON{MU)} GO TC 4C
INC = 1

IF(MU.LENP) INC=2

MSUM = MSUM + INC*EM
TF{MSUMJNE.MLTY GO TO 490

DO 20 MU=1,NMNP
EN = NOQN(MU)

EL = LON(MU)
L(NLPROD,MU)

= EL
LABEL = EN*(EN-1

YR(2%EN-1)/6 + EL*(EL+1) + 1
+ ML{NLPROD,MU)

LL{NLPROD,MU) = LABREL

IF(MU.EQel) GO TO 20

IF(MU.EQ.NPPY1)Y GO 70 20

MUMl = MU - 1

IF(LL(NLPRID,MU).LT.LL{NLPROD,MUML)}) GO TO 40

INC = 1

IF(MULLELN®Y INC = 2

NL = NOCC(LABREL)

NL = NbL + INC

IF{NL.GT«2) G0 TN &40

NOCC(LABEL) = NL

CONTINUF

GQ TC 50

NLPROD = NLPROD-1
TF(M{U).EQ.LON(U)) RO TO S0
M{U) = M{U) + 1

GO TG 6

Uu=uU=+21

IF(Us FQe VI GO TG 502
IF(M{UN.EQ-LAN(UY) GO 7O 501
W=uU

GO 7O 5C4

ITF{MIVIJNE.LQN{V)Y) GO TO 503
IF(V. EQ.NMNP) GO TO 506

V=V + 1
G0 1D &02
W=V
u =1

WMI = W - 1
D3 05 MyU=1,WM1

MIMU) = -LONMU)
MW} = M{W) + 3
G0 TN 6 :

NLP{C) = NLPRGD
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TF(NLPROD.NE.O) GO TO 52
WRITE(3,1014)

FORMAT(////%' THERE ARE ND SUITABLE ORBITAL PRODUCTS ~*

*DATA ARE INCONSISTENT®)

“60 TO 113

MULIM = NMNP

FOR FACH CONFIGURATION, SWEEP ALL SUITABLE

PRONUCTS, CONVERT THEM TO STANDARD FORM
Dg Q95 I=1,NLPROD

SHIET BLOCK

NMNP = MULIM

NP = N - NMNP

NTP = NMNF - NP
IFINPP2.GT NMNP) GO TO 71
DO 68 MU=NPP2,MULTM
IF{MULGT, NMNPY GO TO 71
MUM]I = MY - 1
IF(LLC(IMU)uNELLLII,MUMI)) GO TO 68
NMNP = NMNP - 1

SAVE!? LL(TI,MUMI)

SAVEZ NP + 1
IF(NP.EQ.Q) GOQ TO 56

DO 53 NU=1,NP
IF(LLCTIWNU).LESSAVEL)Y GO T3 52
SAVEZ2 = NU

GO YO 5¢

CONTINUFE

XILIM = MyUMl - SAVEZ2
IF(XILIM,EQ.O) GO TO 62
DD 59 XI=1,XILIM

OM = My - X1

LL{r,aM) = LL{T,CM=-1)
LL{T,SAVE2) = SAVEl
IFENMNP LT . MU) GO TO &7
DO 65 XT=MU,NMNP

LL{TWXT)Y = LL(IXT+1)
NP=N-NMNP

NTP = NMNP - NP

CONTINUE

pRS(C,I) = NP

END SHIFT BLOCK

GO TO 81

UNPACK MU SUBSCRIPT
IF(NP.EQ, Q) GO TO 81
DO 80 MU=1,NMNP

MUMI = MU - 1

J
K

0
NMNP - MUMI

ORBITAL
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D = MUM1 - NTP
IF(DaeGT&a0) J3=D
NEW = N-MUM1-J
NEW1 = NEW - 1
LABEL = LL(1,K)
LL(I,NEW) = LABEL
LL(T«NEWI)= LABEL
CHKMY = 0
EN = 1
72 CHK = EN*(EN+1)*(2%EN+11/6
TF(CHK. GE. LABEL) GO TO 725
CHKM] = CHK
EN = EN + 1

GC TO 72

725 NQN{NEW) = EN
NON(NEW1) = EN
LAREL = LABEL - CHKM
EL = ©C

72 CHK = (EL+1)#x%x2
IF(CHK, GE« LAREL) GO TG 728
EL = EL+1
GO TO 73

735 L(TI.NEW) = EL
L{T,NEW1) = EL
EM = LAREL - EL*(EL+1} -1
MLIT,NEW) = EM
MLITI.NEW1) = EM

80 CONTINUF
ENDO MU EXPANSION BLCCK

GET SPIN EIGENFUNCTIONS TO GO WITH ITH SPACE PRCODUCT
FOR CONFIGURATION C
8 CLIM = C
NPL = NPL + 1
PL(C+T1) = NPL
SW =0
IF(TI«NEL1) GO TO 82
IF{CLIM.EQe1) GO 70 88
LM =C -1
82 DO 87 CC=1,CLIM
JLIM = NLP(CCT)
IF(CC.FQeC) JLIM = I-1
DO 86 J=I,.JLIM
IF{SW.EQal) GO TO 84
IFIPRS(C,I).NE.PRS(CC,J)) GO TC 86
PL(Cs1; = PL(CC,J}
NPL = NPL = 1

SW = 2
CONF = CC
PROD = J
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GO TO 880
84 IF(PRS{(CCyJ)aGE«PRS{C,I)}) GO YO 86
CONF cC .
PROD J
GO TO 88C
8¢ CONTINUE
87 CONTINUE
IF(SW.NE.C)} GO TO 88
SW =1
GQ TO 83
28 CALL SSOEIGI(ND2,NP,ST+MSTo,C,I,NPL,NPRSP,NSPROD,NSEF,

1 PSCODE,FLEIG,FSCDSK.SLDISK)
NPS{NPL) = NPRSP

GG TG 8S
NPRSP WILL BE ZERQ IFF THERE ARE NO SUITABLE SPIN

FIGENFUNCTIONS TC GO WITH THE CURRENT 0ORB PRGD
PRGL = PL(CONF,PRGD)}

PLI = PL(C,I)

NPRSP = NPS{PRGL)

[ Ne]
0
0
D

NDO = PRS{C,I)
CHK = 2*%{ND2-NDO)
COUNT = O

D0 &R1 PSC=1,NPRSP
IF(SW.FQ.2) GO TO 88CGC
IF(PSCODE(PRGL.PSC).GE.CHK) GO TG 881
88CC COUNT = COUNT + 1
NSF = NSEF(PRGL,PSCH
NSP = NSPROD(PRGL,PSCiH
NSPROD(NPL,COUNT) = NSP
NSEF{NPL,COUNT) = NSF
CTEMP
PO 8R02 ISP=1,NSP
D0 8801 SEF=1,MNSF
8801 FSCRSK(PLILCOUNT,SEF,ISP) = FSCDSK(PRGL,PSC,SEF,ISPi
DC 88C2 PR=1,NDZ
8802 SLDISK{PLI,COUNT,ISP,PR) = SLDISK(PRGL.PSC,1SP,PR)
CTeEmP
881 COCNTINUE
IF(SH.EQe2) GO TO 89
NPS(NPL) = COUNT

c FORM LSO-MATRIX (UPPER TRIANGLE) FOR CURRENT CONFIG
82 RPL = PL{C,I)

NRPS = NPSIRPL)

IF(NRPS.EQ,G) GO 70O 95

D3] 94 RPS=1,NRPS

NSP = NSPROD(PPL,RPS)

NRSEF = NSEF(RPL,RPS)}

D0 92 RSEF=1,NRSEF

NRAF = NRAF + 1
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SW =0
CTEMP
DO 8901 ISP=1,NSP
FSC(2,RSEF,ISP) = FSCDSK(RPL,RPS,RSEF,ISP}
D0 89C1 PR=1,ND?
RO0I St(2,ISP,PR) = SLDISK(RPL+RPS,ISP,PR)
CTEMP
MU = 1
WRITE(2,891) NRAF
891 FORMAT(////5X.* SAAP NUMBER %,13////20X,'SPACE ¥,
1 SPRODUCT® 48Xy *SPIN EIGENFUNCTION®//23Xe*'N L M*,
2 4CX *COEFFICIENT',15X,*GEMINAL SPIN PRODUCT'///)

852 IF(MU.GT.N) GO TO 894

FL = L{I.MU)
EM = ML(I,MU)
FN = NQN(MU)

WRITE{3.893) EN,FL.EM
892 FORMAT{'+%,22%X.3(12})}

SW =1
RGL IF{MU.GT.NSP) GO TD 896

WRITE(3+4895) FSC(2+RSEF MU}, (SL(2,MU,PR)4PR=14ND2Z)
895 FORMAT('4'465X+F19.16,16X,711)

SW =1
2¢e¢ IF(SHW.EQ.Q) GO TO 898
SW =0
WRITE(3,897)
897 FORMAT(/)
MU = MU+1
6D TO 862

8c8 WRITE(2,899)
899 FORMAT(/////)
NLAF = C
N0 91 LPROD=1,NLPROD
LoL = PL(C,LPROD)
NLPS = NPS(LPL}
IF(NLPS. EQ.0) GO TG 91
DO S0 LPS=1,NLPS
NLSP = NSPRCD(LPL,LLPS)
NLSEF = NSEF(LPL.LPS)
DO SO LSEF=] ,NLSEF
CTEMP
DO 8961 ISP=1,NLS?P
ESC(1sLSEF,ISP) = FSCDSK(LPL,LPS,LSEF,ISP)
DD 8991 PR=1,ND2
8261 SL{1,ISP,PR) = SLDISK(LPL,LPS,TSP,PR)
CTEMP
NLAF = NLAF + 1
COWNT = COWNT + 1
FLTINT(COWNT) = FLSOQME(C 4LPRODGLPSHLSEF4CyI4RPS,RSEF,
1 NyMLT,PRS,LABLIM)
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IF(NLAF,EQeNRAF) GO TO 93
Q0 CONTINUE
21 CONTINUE

C
S3 CONTINUE
g4 CONTINUE
25 CONTINUE
c (95 1S END OF I-LOOP)
c
C
C DIAGONALIZE THE LSQ MATRIX

OO N

IF(NRAF.GTL3) GO 7O 1C1
FLFIG(1) = 1.00C
GO TO 104
1 CALL EIGEN(FLINT,FLEIG,NRAF,1,ID0Xy41,00-14}
104 NLEF = 0
WRITE(2,1012) CoLT4MLT9STHMST
1012 FORMAT('ICONFIGURATION ',I11,'e LIST OF SIMULTANEODUSE®,
' EIGENFUNCTIONS OF LSO. LZ, SSQs AND SZ, WITH'/
I8Xe ' LT = PoTl,7Xs"MLT = "4I1,7X9'ST = '51147Xy
YMST = 8,13/77774X4%EF NOo ' 922X, *COEFFICIENT®,
15X, 'SAAPY// /)
DO 110 11=1,NRAF

ST RN W)

N1 = T1%(I1+1)/2

N2 = (11-1)*NRAF

FD = FLINT(N1)

FD = (NSORT(1,0D0+4.CDO*FD)-1,0D0)/2.000
LFIGV = FD

FD = FD-LEIGV
IF(FDaGTeCerS) LEIGYV = LEIGV + 1
IF{LEIGVeNE.LT) GO 70 11C
NLFF = NLEF + 1
WRITF(2,1013) NLEF,(FLEIG(N2+1I2),12,12=14NRAF)
1013 FOPMAT(////77%0" +4X912+50(17X9D23416+10X+*SAAP(',12,
1 Y77y
WRITE(3,1017) LEIGV
7 FORMAT('4¢,75X,*{CORRESP, TO L-EIGENVALUE OF ?,12,%)")
¢ CONTINUE
IF(NLEF.NE.O) GO 70O 213
WRITF(3,1201) LY
131C1 FORMAT{(/////7°*0THE EIGENVALUE LT = %,12,
1 'DOES NOT QOCCUR FOR THIS CONFIGURATION?!)

10

113 CONTINUE
(113 IS END OF C-LOOP)

RETURN
END
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SURPROGRAM 2,

e NeNeNeNale]

10

SUBRQUTINE SSQEIG(NP,NDO,SKEEP,MKEEP,C,0ORBPRD,PRGL,
NPS NGP,NSEF,PSCODE, FLEIG,FSCDSK,SLDISK)Y

IMPLICIT REAL*8(F), INTEGER(A-E,G-2)

DIMENSION PS(4) NGP(5,16)+L(2,13+4),M(2,13,54),
SEIGV(I3),FLEIG(250C) 4NSEF(5,16)4FC{2+13913),
PSCODE(5416)+FSCDSK(5,16413413),SLDISK(5,16,413441%

COMMON FCoL oM

SSQEIG FINDS EIGENFUNCTIONS OF S¥%2 AND SZ FOR THE
GIVEN PAIRING LABEL *PRGL"'.

FACT2 = T7.071067811865475D-01

TNP = NP + NP

TTNE = 2%%NP

MAGMT = IABS(MKEEP)

NPS = C

SWEEP DECIMAL REPS 0OF PSS

DO 40 DPS=1,TTNP

DPSMy = DPS - 1

TD = DPSM1

CONVERT DEC REP TO PS'S

pPSSUM = 0O

DN 10 P=1,NP

PT = 2 %% (NP-P)

PSP = TO/PI

IF(P.GT.NDO) GO TN ©

IF(PSP.NE.O)} GC TQ 40

PS(P) = PSP

TD = TD - PSP*PI

PSSUM = PSSUM + PSP

KEEP ONLY PS COMBINATIONS APPROPRIATE TO MKEEP
IF{PSSUM LT, MAGMT) GO TR 40

NPS = NPS + 1

GET SSQ-EIGENFUNCTIONS CORRESPONDING TO SZ-EIGENVALUE
EMKEEPt, AND GIVEN PS*S

CALL SEIGEN(NPNPS,PS,MKEEP,SEIGV.FLEIG,NPROD,PRGL)
NGP(PRGL,T) IS NO. OF GEMPRODS ASSOCIATED WITH PSC
t1¢ AND PAIRING LABEL °*PRGL?

NGP{PRGL+NPS) = NPROD

PSCODE(PRGL 4NPS) = DPSM}

IF(NPRCOD.NE.O) GO TO 15

NPS = NPS -~ 1

GO 70 4C

NSEF(PRGL,I) IS NO« 0OF SSQ-EIGENFUNCTIONS WITH GIVEN
EIGENVALUE WHICH ARISE FROM ITH PSC FOR PRGL
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15 NSF = ¢
DO 27 ISEF=",NPRCD
N2 = (ISEF-1)*NPRQOD
IF(SEIGVIISEF).NE.SKEEP) GO TO 37
NSF = NSF + 1
D3 30 IPROD=1,NPROD
CTEMP
3C FSCDSK{PRGL,NPS,NSF,IPROD) = FLEIG(N2+IPROD)
CTEMP
37 CONTINUF
NSEF(PRGL,NPS) = NSF
IF(NSF.EQ.C) GO TO 29
CTEMP
DO 38 IPRED=1,NPROD
D3 28 P=1,NP
38 SLDISK(PRGLLNPS,IPROD,P) = L(1,IPROD,P)
CTEMP
39 WRITE(3,410) NSF
410 FORMAT(100X,* AND NSEF = *,12)
4C CONTINUE
RETURN
END

SURBPROGRAM 3,

SUBROUTINE SEIGEN(NP,NPS,SFIX,MTFIX,SEIGV,FLEIG,
1 NPROD.PRGL)

IMPLICIT REAL*8(F), INTEGER(A-E,G-2)

REAL*8 DSORT

DIMENSION SFIX{&),LABEL(4),TS{4),TM(4&)4S(13,4),
1 M(2+,13,4)4L(2,13,4),FLINT(S1),SEIGV(13}),IDX(12),
2 FBLANK(238),FLEIG(25C0)

CCMMON FBLANK,L,M

* % x ¥ &k Xk %k X% X ¥ * ¥k &k & ¥k
SEIGEN RECEIVES PAIR-SPINS AND TOTAL MS FROM SSQEIG,
AND FINDS SSQ-EIGENFUNCTIONS SATISFYING THAT DATA.

INPUT REQUIRED - TOTAL MS (MTFIX), PAIR-SPINS (SFIX

VECTOR), N/2 (NP).
% % %k ¥ & %k %k ¥ ¥ %k *k k * ¥ %

THIS SECTION PRODUCES NPROD PRODUCT FUNCTIONS OF THE
SPECIFIED TYPE, THE NTH ONE HAVING THE PAIR-FUNCTION
LABELS (L{PRGLyNPSyN,I)+I=1,NP), PAIR=-SPINS

OO0 ANNOO
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{S(NsI)sI=14NP), AND PAIR-MSE*S {(M{NPSsNyI),I=1,NP],
10C NPROD = 0

LLIMPT = &4%%kNP

DN 200 Ti=1,LLIMP]

TMT = ©
NMBR = [1-1
TN = NMBR

DO 170 12=1,NP
PI = &4¥*(NP-12)
LABEL(I2) = TN/PI
TN = TN - LABEL(I2)*PI
TS(12) =1
IF(LABEL(TI2).EQsC) TS(I2)=C
IF(TS(I2).NELSFIX(I2)} GO TO 20C
TM{I2) = TS(I2)*(LABEL{12)1-2)
170 TMT = TMT + TM(I2)
IF(TMT-MTFIX) 206,180,200
180 NPROD = NPROD + 1
DO 160 12=i,NP
S{NPROD,I2) = TS(I2)
M(1,NPROD,I2) = TM(I2)
ieC L(1,NPROD,I2) LABEL(T2)
20C CONTINUE
IF(NPROD.NE. O) GO TO 299
RETURN

% % & %k %k %k o5k ¥ %k k& % & %
SSQ-MATRIX BETWEEN PRODS OF SPECIFIED TYPE. STORED AS

THE MATRIX YINT'.

ol

¥ ¥ ¥ & % X k ¥ X% ¥k ¥ R X

299 COUNT = ©
DO €60 12=1,NPROD
DD 5&0 11=1,12
INT = 0O
COUNT = COUNT + I
ND = 0O
DO 420 13=1,NP
IF(L{1eT14I33,NEaL(1+412,13)) ND=ND+1
420 CONTINUE
IF(ND.NE.O) GO TO 46C

DIAGONAL ELEMENTS

430 DO 450 13=1,4NP
LBL = L{1,11,13)
TF(LBL.EQ.O) GO TO 45C

450 CONTINUE
INT = MTRIX*(MTFIX+1) + 2%ND
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GC TO 540
OFF-DIAGONAL ELEMENTS

IF{ND-2) 540,510,540

D0 520 12=2,NP
IF(IABSIMI1,11,1I3)-M{1,12.,13)).GT.1}) GO TO 520
I2M] = 13 - 1

DO 518 14=1,13M1
IF{SCTI14T3)+S(T11,14)4S(12,13)4S{12,14VeNEa4) GO TO 518
M124 = M(1,11,1I3) + M{1,11,14)
IF(M1I34.NE.M(1,12,73)eM(1,12,14)) GO T 518
IF{TARS(M1341.GTL.1) GO TO 518

INT = INT + 2

CONTINUE

CONTINUE

FLINT(COUNT) = INT

CONTINUE

IF(NPRQOD-1) 970,600,510

FLEIG(1) = 1.0DC

G3 TN €20

* k & ¥ &k Kk X %k %k X %k k &k ¥ ¥
DITAGONALIZE THE SSQ-MATRIX, GET SSQ-EIGENFUNCTIONS
* %k & %k ¥ ¥ k k£ ¥k %k *k % ¥ ¥ %k

CALL EIGEN{FLINT,FLEIG+NPRCGDy1,1IDX+1400~14)

NG 640 11=1,NPROD

Ni = Ti%x(I1+1)/2
FD = FLINT(N1)
FD = (DSQRT{1.0D0+4,CRC*FD)-1,0DC)/2.0DC

SFIGV(I1) = FD

D = FD = SEIGV(TL)

IF{FDaGTs0500) SEIGV(TIX} = SEIGV(I1) + 1
CONTINUE

RETURN

sSTOP

END

SUBPROGRAM 4,

FUNCTICON FLSOME(CT I 4LPSoLSEFeCJIeJsRPSyRSEF4NyMLT,PRS,
LABLIM)}

ITMPLICIT REAL*8{F)y, INTEGER(A-E,G-Z)

REAL*S8 DSQRT

DIMENSION PRS(5,20),M(20,8),L0OCC(111),ROCC(L11),
LABEL(8),LBL(20,8)4E(8,2)4BLANK(208)4FSC(2413,13),
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PLTS5,20),NSPROD(5,16) ,L(20,8)
COMMON FSCoBLANK.M,L,LBL,NSPROD,TNP,TTNP,PL

FLSQME CALCULATES THE INTEGRAL OVER L*%¥2 BETWEEN

TWs SAAPTS,

FLSQME = 0.CDC

ND2 N/2

oLL PL(CI,LI)

PLR PL(CJ, I

NLPROD = NSPROD(PLL,.LPS)
NRPROD = NSPROD(PLR,RPS?
TF(CI.NE.CJ) GO TO iC
IF(lIeNE.J) GO TO 1C
IF(LPS.NE.RPS) GO TG 10
IF(LSEF.NEJRSEF} GO TO 10

DIAGONAL-TFRM CONTRIBUTION
FLSME = MLT®{MLT<+1)

DO 70 NU=1,N

MNU = M(I,NU)

LNU = L(T.NU?

IF{MNU, EQ.LNU)Y GO8 7O 70

DD 68 MU=1,N

DO 11 CHKI=1,LABLIM
LOCC(CHKY)
ROCC(CHKY)
DO 12 CHK1
LL = LBL{I,CHKL)

RL = LBL{J,THK])
LAREL(CHK1) = tL
LOCC(LL) = LOCCILL) +
ROCC(RL) = ROCC(RL) + 1
MMU = M{I.MU)

LMU = L(I.MU)
TF(MU.NE.,NU) GO TO
MMU = MMU + 1

GO0 70 20

IF (MMU, EQe ~LMU}) GO

= 0
=0
=1 4N

e~

[W)
N

70 68
APPLY QOPERATOR L-(MUIL+(NU)
(1)

LaLmMy
LBLNU
LABEL{MU) =
LABEL (NU} =
LOCC(LBLMU) =
LOCC{LBLNU) =
LOCC{LABEL {MU))
LOCC(LABEL(NU)) =

LBL(I MUY
LaL(I,NU)
LBLMU - 1
LBLNU + 1

LOCC(LBLNU)

TC LEFT DRBITAL PRODUCT

LOCC(LBLMU)Y - 1
-1
= LOCC(LABEL(MU)) + 1
LOCC(LABEL(NU))Y + 1
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DOES (L-(MUIL+(NU)*I) CONTAIN THE SAME ORBITALS AS

THE RIGHT ORB PROD (J)} ?

DO 20 CHK1=1,LABLIM

IF(ROCC(CHKLI )« NE. LOCC{CHK1})}) GO TO 68

CONTINUE

IF SO, FIND THE PERMUTATION (E) THAT CONVERTS

(L=(MUJL«(NU)*T) TO THE RIGHT ORB PROD Je THE PERM

IS FOUND AS A PRODUCT OF TWO-CYCLES.

NCYC = ©

DO €0 CHK1=1,N

DO £8 CHK2=CHK1,N

TF(LBL{J.CHK1)eNE.LABEL (CHK2)} GO TO 58 -

IF(CHK1.EQeCHK2) GG TC €0

NCYC = NCYC + 1

E{(NCYC,1) = CHK1

E(NCYC+2) = CHK2Z

SAVE = LABEL{(CHK1}

LABEL (CHK1) = LABEL(CHK2)

LABEL(CHK2) = SAVE

GO TO 60

CONTINUE

CONTINUE

GET THE CONTRIBUTION 7C FLSQME FROM THE L-(MU)L+(NU)

TERM

FME = 0.0D0

NO €2 LPROD=1,NLPROD

DO 62 RPRCD=1,NRPROD

FMF = FME + FSC(1,LSEF,LPROD} * FSC{2,RSEF,RPROD) =*
FPMAT(ND2,NCYC,E+TNP,TTNP,PLL,LPS,LPRCBD,PLR4RPS,
RPROD)

CONTINUE

IF(FME.EQe 0o CDO) GO TG 68

FCMUNU = (LMU=-MMU+1)*{LMU+MMU) X (LNU-MNU )X (LNU+MNU+1)

FCMUNU DSORT(FCMUNU)

FLSOME FLSOME + ((=1)%*=NCYC) ¥ FME * FCMUNU

CONTINUE

68 IS END OF MU-LOOP

CONTINUE -

70 IS END OF Nu-~LOOP

NGRMALIZATION
PWR = (PRS(CJ+J)-PRS(CI,I))
IF(PWR.GEeO}) GO TC 75

PWR = =PWR
FNORM = 1,0D0/{2*%PWR)
GO TO 80

FNORM = 2 #** PWR

FLSQME = FESOMEX*DSQRT(FNORM}
RETURN

END
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SUBPRQOGRAM 5,

¥ aNaNeNaNaNa¥el

a0

301

305

307
308

FUNCTION FPMAT(NPyNCYCS,E+TNPoTTNP,PLL,LPS,LPROD,PLR,
RPS,RPREOD)

IMPLICIT REAL*8(F), INTEGER(A-E,G-Z)

DIMENSION T(4)4M(4),SL(8)+L(25,13+4)49SEP(16),E(8,+2),
FCOEFF(16),FBLANK(238)

COMMCON FBLANK,L

% %k %k x ¥ *x k¥ ¥ ¥ *x -k X Xk

CALCULATES (LEFT GEMPROD/P/RIGHT GEMPROD), WHERE
GEMPROD DATA IS IN COMMON, AND PERMUTATION CONVENTICN
IS THAT (122) MEANS*ORBITAL 1 REPLACES ORBITAL 2,

ETCe* EeGes (1231ABC = CAB,
* % k% k * ¥* ¥ k ¥ %X ¥ k¥ X

FACT?2 7.0710678118£5475D-01
FPMAT = 0.0DO

IF(NCYCSe.NEs.O) GO 70O 305
WHEN NCYCS=C, PERMUTATION IS TAKEN 7O BE THE IDENTITY,

THEN FPMAT IS OVERLAP BETWEEN LEFT AND RIGHT SPIN
GEMPRODS.

DO 3C1 1I3=1,NP

IF(L(1,LPROD,I3)NE,L(2,RPR0OD,1I2)) GO TO 370
CONTINUE

FPMAT = 1,000

G8 TO 370

D0 365 SIDE=1l,.2

PL = PLL

PS = LPS

PROD = LPROD

IF(SIDE.EQe1} GO TO 306

2L = PLR

PS = RPS

PROD = RPROD

COUNY = O

FOR FIXED SIDE AND GEMPRODy SWEEP ALL SEPREDS AND
CONVERT SUITABLE DECLABELS TO BINLABELS.
DO 360 13=1,TTNP

I3M = I3 - 1

DO 210 14=1.NP

PI = 2%*%(NP-14)

T(I1&) = I3M/PI + 1
IF(L(SIDELPRODsI4)aNELD) GO TO 307

S=0
GO TG 308
S =1

M(14) = S*(L(SIDE.PRGD,I4)-2)
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IFIT(I4)eEQ.1) GO TO 210
SKIP SEPROD LABELS WHICH ARE NOT ASSOCIATED WITH THE
GIVEN GEMPROC.
IF(M(I4)eNE,O) GO TO 260
310 I3M = I3M - T(I14)*PI + PI
COUNT SEPRODS ASSOCIATED WITH GIVEN GEMPROD
COUNT = CGUNT + 1
FOR EACH SEPROD KEPT, GENERATE THE SINGLE-ELECTRON
SPIN FUNCTION LABELS (SUL'S) AND THE COEFFICIENT (FC)

FC = 1.0D0
D3 330 I4=1,NP
Ti4 = 2%14

TI4M1 = T14 - 1
IF(M{I4)eNE.O) GO TO 215
IF(T(I4)eNE.2) GO TO 325
SL{TI4ML) = O
SL(TI4) =1
FC = FCx*FACT2
IF(L{SIDE,PRODyI4)aEQ.2) GO TO 23C
FC = =FC
GO TO 330
315 SL(TI4Ml) =1
IF(L{SIDE,PRODyI4)sEQ.3) GO TO 320
SL(TI4M1Y = O
32C SL{TI4) = SL{TI4aMl)
GO 70 330
325 SL{TI&Ml) = 1
SLITI4)Y = O
FC = FC*FACTZ
330 CONTINUE
IF(SIDE.EQ.1} GO TO 240
I¢ SIDE = 2, PERMUTE THE SL*'S
DC 326 K=1,NCYCS
I = NCYCS +1 - K
TEMP = SL{E(I,2})
SLCE(T,2)) = SL(E(I,1)}
336 SL{E(I,11} = TEMP
GENERATE PRODUCT *SEPROD®' FROM SL°*S
340 SEPROD = C
D3 345 I14=1,TNP
245 SEPROC = SEPROD + SL{I&S)*(10%*%x(TNP-14))
IF SIDE=1, STQORE SEPROD AS SEP{COUNTis FC AS
FCOEFF(COUNT)
IF(SIDE.EQe2) GO TO 3250
SEP(COUNT) = SEPROD
FCOEFF(COUNT) = FC
GC 70 360
350 CONTINUE
DG 355 [4=1,NSPL
IF(SEPROD. NE« SEP(14)) GC TO 255
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FPMAT = FPMAT + FC*FCOEFF(I4)

CONTINUE

CONTINUE

IF SIDE=1, STORE NUMBER Of SEPRODS ASSOCIATED WITH
LEFT GEMPROD

IF(SIDE.EQs2) GO TO 365

NSPL = COUNT

CONTINUE

RETURN

END

SUBPROGRAM 6.

nnnr)nnnnnnnnnnnnnnnnnnnnnnnnnnnn

SUBROUTINE EIGEN{A4R,N,MV,IDX,CVG)

COMPUTE EIGENVALUES AND EIGENFUNCTIONS OF A REAL
SYMMETRIC MATRIX

DESCRIPTION OF PARAMETERS -
A - ORIGINAL MATRIX, DESTROYED IN COMPUTATION,

RESULTANT EIGENVALUES ARE DEVELOPED IN DIAGO-
NAL OF MATRIX A,
R = RESULTANT MATRIX OF EIGENVECTORS (STORED
COLUMNWISE, IN SAME SEQUENCE AS EIGENVALUES)
N - ORUER Gr MATRICES A AND R
MV - INPUT CODE
0 COMPUTE EIGENVALUES ONLY (R NEED NOT
BE DIMENSIONED BUT MUST STILL APPEAR
IN CALLING SEQUENCE)
1 GENERATE R MATRIX---COMPUTE EIGEN-
VALUES ONLY
1 GENERATE R MATRIX---COMPUTE EIGEN-
VALUES AND EIGENVECTORS AND SORT
=1 SAME AS 1 EXCEPT R IS INPUT
2 GENERATE R MATRIX---COMPUTE EIGEN-
VALUES AND EIGENVECTORS BUT DO NOT
SORT
=2 SAME AS 2 EXTEPT R IS INPUT
CVG - CRITERICON FOR CONVERGENCE
CVG IS POSITIVE---FINAL NGORM=CVG
CVG IS NEGATIVE---FINAL NORM IS COM-
PUTED FRGM CVG

ORIGINAL MATRIX A MUST BE REAL SYMMETRIC (STORAGE
MGODE=1)e MATRIX A CANNOT BE IN THE SAME LOCATION AS
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MATRIX Re A IS COLUMNWISE UPPER TRIANGULAR AND R IS
COLUMNWISE SQUARE, EACH STORED IN ONE-DIMENSIONAL

ARRAYS.

IMPLICIT REAL*8({A-H,0-7}
DIMENSION A{1),R(1),IDX(1)

GENERATE IDENTITY MATRIX
iIF(MV)21,21,10
14=0
DO 20 J=1.N
DO 2C I=1.N
1J=1J+1
R(1IS) = 0.0DO
IF(1.EQaJIR(IJ) = 1.CDC
CONTINUE
MX=TABS {MV)

IF(Ne EQa 1 )RETURN

COMPUTE INITIAL AND FINAL NORMS (ANORM AND ANORMX)
ANORM=0, OC+C0 ,
IDX(1)=0
DO 35 I=2,N
JLIM=I=-1
IDX(IV=IDX{JLIM)+JLIM
IA=IDX(1I)

DO 35 J=1,JLIM

IA=TA+1
ANORM=ANORMEA{TAIXA(TIA}
IF{ANORM) 165,165,440
ANORM=2,0D+00%DSQRT { ANORM)
DIV = 2.000 / DFLOAT{(IA + 1)
ANRMX=CVG

IF (ANRMX1424432,42

ANRMX = ANORM*DIV*DABS { ANRMX)
IF{ANRMX,GT. ANORM} GG TGO 1€53

INITIALTZE INDICATGRS AND COGMPUTE THRESHOLDs THR
THR=ANORM
THR=THR*DIV
IND=0
DN 1001 L=2.N
LMO=L~-1
LQ=I0X(L)

Lt=L+L0Q
NG 1001 M=1,LMO
MQ=IDX(M)

COMPUTE SIN AND CQS
{M=LQ+M
IF{DABS{A(LM)I=-THR)I1ICC1,65,65
IND=1
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MM=M+MQ
X=0e 5D4+00%(A(LL)-A(MM))
Y==A(LM)/DSQRT(A(LM)HA(LM)+X*X]
IF(X) 7C+75+75
Y==Y
SINX=Y/DSORT{(2.00+00% (1 00+00+(OSQRT(1. 0D+00-Y=Y) }})}
SINX2=SINX*SINX
COSX=DSORT(1.0D+00-SINX2)
COSX2=CO0SX*COSX
SINCS =SINX*COSX

RNTATE L AND M COLUMNS
TLO=N*{L=-1)
IMO=N%x{M=1)
DO 125 I=1,4N
I10=IDX(1I}
IF{I-L) 80,115.,80
IF(I-M) 85,115,290
IM=I+MQ
GO TO 95
IiM=M+1I0Q
IF(I-L) 1C0,105,105
IL=1I+LC
GO TO 110
IL=L+10C
X=A{IL)*COSX=A(IM)*XSINX
A(IMI=ACILI*SINX+A(IM)*COSX
A{IL)=X
IF(MX)120,125,120
TLR=ILO+I
IMR=IMO+1
X=R(ILRI*COSX-R{IMRI*SINX
R{IMR)=R{ILR)IXSINX+R{IMR)I*CASX
R{ILRYI=X
CONTINUE
X=A(LM)=(SINCS+SINCS)
Y=A{LL)*COSX2+A{MM)*SINX2=-X
X=A{LLY*SINX24+A(MM)=COSX2+X
A(LMj=0.0D0
A(LL)=Y
A{MM)}=X
CONTINUE
IFCIND-1) 16C,155,160

COMPARE THRESHOLD WITH FINAL NORM
IF(THR-ANRMX)1165,165,45

SORT EIGENVALUES AND EIGENVECTORS
IF{MXeNEs1} RETURN
1Q=0
DG 185 1=2,N
JLIM=I=-1
IQ=1Q+N
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LL=I1+41DX(1)
JQ==N

D0 185 J=1,JLIM
JO=JQ+N
MM=J+T10X{J)
IF(A{LL)-A(MM))170,185,185
X=A{LL)
A(LL)Y=A(MM)
A{MM) =X

DO 180 K=1.N
ILR=IG+K
IMR=JO+K
X=R(ILR)
R(TILR)I=R{IMR)
R{IMR)=X
CONTINUE

RETURN

END
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